These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 20001064)

  • 1. Hexagonal ice transforms at high pressures and compression rates directly into "doubly metastable" ice phases.
    Bauer M; Winkel K; Toebbens DM; Mayer E; Loerting T
    J Chem Phys; 2009 Dec; 131(22):224514. PubMed ID: 20001064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of ices at 0 K: a test of water models.
    Aragones JL; Noya EG; Abascal JL; Vega C
    J Chem Phys; 2007 Oct; 127(15):154518. PubMed ID: 17949184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isobaric annealing of high-density amorphous ice between 0.3 and 1.9 GPa: in situ density values and structural changes.
    Salzmann CG; Loerting T; Klotz S; Mirwald PW; Hallbrucker A; Mayer E
    Phys Chem Chem Phys; 2006 Jan; 8(3):386-97. PubMed ID: 16482282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous transformation of water's high-density amorph and a two-stage crystallization to ice VI at 1 GPa: a dielectric study.
    Andersson O; Johari GP
    J Chem Phys; 2004 Jun; 120(24):11662-71. PubMed ID: 15268201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.
    Salzmann CG; Radaelli PG; Finney JL; Mayer E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6313-24. PubMed ID: 18936855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa.
    Andersson O; Johari GP
    J Chem Phys; 2011 Mar; 134(12):124903. PubMed ID: 21456699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ice phase of lowest thermal conductivity.
    Andersson O; Johari GP; Suga H
    J Chem Phys; 2004 May; 120(20):9612-7. PubMed ID: 15267973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic boundaries and phase transformations of ice i at high pressure.
    Wang Y; Zhang H; Yang X; Jiang S; Goncharov AF
    J Chem Phys; 2018 Jan; 148(4):044508. PubMed ID: 29390815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain.
    Choukroun M; Grasset O
    J Chem Phys; 2007 Sep; 127(12):124506. PubMed ID: 17902920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.
    Slovák J; Tanaka H
    J Chem Phys; 2005 May; 122(20):204512. PubMed ID: 15945757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formation of cubic ice under conditions relevant to Earth's atmosphere.
    Murray BJ; Knopf DA; Bertram AK
    Nature; 2005 Mar; 434(7030):202-5. PubMed ID: 15758996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of the polyamorphic transition of ice and the liquid-liquid critical point.
    Mishima O; Suzuki Y
    Nature; 2002 Oct; 419(6907):599-603. PubMed ID: 12374974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reexamination of the ice III/IX hydrogen bond ordering phase transition.
    Knight C; Singer SJ
    J Chem Phys; 2006 Aug; 125(6):64506. PubMed ID: 16942297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and stability of cubic ice in water droplets.
    Murray BJ; Bertram AK
    Phys Chem Chem Phys; 2006 Jan; 8(1):186-92. PubMed ID: 16482260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene.
    Kimmel GA; Matthiesen J; Baer M; Mundy CJ; Petrik NG; Smith RS; Dohnálek Z; Kay BD
    J Am Chem Soc; 2009 Sep; 131(35):12838-44. PubMed ID: 19670866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water.
    Jacobson LC; Hujo W; Molinero V
    J Phys Chem B; 2009 Jul; 113(30):10298-307. PubMed ID: 19585976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent Raman features in high density amorphous ice, ice VII, and ice VIII under pressure.
    Yoshimura Y; Stewart ST; Somayazulu M; Mao HK; Hemley RJ
    J Phys Chem B; 2011 Apr; 115(14):3756-60. PubMed ID: 21425814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-induced amorphisation of hexagonal ice.
    Handle PH; Loerting T
    Phys Chem Chem Phys; 2015 Feb; 17(7):5403-12. PubMed ID: 25613472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anomalously high melting temperature of bilayer ice.
    Kastelowitz N; Johnston JC; Molinero V
    J Chem Phys; 2010 Mar; 132(12):124511. PubMed ID: 20370137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water's polyamorphic transitions and amorphization of ice under pressure.
    Johari GP; Andersson O
    J Chem Phys; 2004 Apr; 120(13):6207-13. PubMed ID: 15267507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.