These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 20001081)

  • 1. Numerical simulations of rubber networks at moderate to high tensile strains using a purely enthalpic force extension curve for individual chains.
    Hanson DE
    J Chem Phys; 2009 Dec; 131(22):224904. PubMed ID: 20001081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular kink paradigm for rubber elasticity: numerical simulations of explicit polyisoprene networks at low to moderate tensile strains.
    Hanson DE
    J Chem Phys; 2011 Aug; 135(5):054902. PubMed ID: 21823727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How far can a rubber molecule stretch before breaking? Ab initio study of tensile elasticity and failure in single-molecule polyisoprene and polybutadiene.
    Hanson DE; Martin RL
    J Chem Phys; 2009 Feb; 130(6):064903. PubMed ID: 19222294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemistry and molecular dynamics studies of the entropic elasticity of localized molecular kinks in polyisoprene chains.
    Hanson DE; Martin RL
    J Chem Phys; 2010 Aug; 133(8):084903. PubMed ID: 20815590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The entropy of the rotational conformations of (poly)isoprene molecules and its relationship to rubber elasticity and temperature increase for moderate tensile or compressive strains.
    Hanson DE; Barber JL; Subramanian G
    J Chem Phys; 2013 Dec; 139(22):224906. PubMed ID: 24329092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distributions of chain lengths in a crosslinked polyisoprene network.
    Hanson DE
    J Chem Phys; 2011 Feb; 134(6):064906. PubMed ID: 21322733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of stress and strain in the interosseous ligament of the forearm based on fiber network theory.
    Pfaeffle HJ; Fischer KJ; Srinivasa A; Manson T; Woo SL; Tomaino M
    J Biomech Eng; 2006 Oct; 128(5):725-32. PubMed ID: 16995759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of complex classical force fields through force matching to ab initio data: application to a room-temperature ionic liquid.
    Youngs TG; Del Pópolo MG; Kohanoff J
    J Phys Chem B; 2006 Mar; 110(11):5697-707. PubMed ID: 16539515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chain stiffness and entanglements on the elastic behavior of end-linked elastomers.
    Bhawe DM; Cohen C; Escobedo FA
    J Chem Phys; 2005 Jul; 123(1):014909. PubMed ID: 16035871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method.
    Akin-Ojo O; Song Y; Wang F
    J Chem Phys; 2008 Aug; 129(6):064108. PubMed ID: 18715052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive modeling of the stress-strain behavior of F-actin filament networks.
    Palmer JS; Boyce MC
    Acta Biomater; 2008 May; 4(3):597-612. PubMed ID: 18325860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuations in granular media.
    Howell DW; Behringer RP; Veje CT
    Chaos; 1999 Sep; 9(3):559-572. PubMed ID: 12779852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bond rupture force for sulfur chains calculated from quantum chemistry simulations and its relevance to the tensile strength of vulcanized rubber.
    Hanson DE; Barber JL
    Phys Chem Chem Phys; 2018 Mar; 20(13):8460-8465. PubMed ID: 29192298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-extension formula for the worm-like chain model from a variational principle.
    Chan Y; Haverkamp RG; Hill JM
    J Theor Biol; 2010 Feb; 262(3):498-504. PubMed ID: 19835889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Studies on stress distribution under simulated muscles on dry skull].
    Okano M
    Nichidai Koko Kagaku; 1989 Sep; 15(3):258-75. PubMed ID: 2489799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of pressure in rubber elasticity.
    Bower AF; Weiner JH
    J Chem Phys; 2004 Jun; 120(24):11948-64. PubMed ID: 15268230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic loading causes faster rupture and strain rate than static loading in medial collateral ligament at high stress.
    Thornton GM; Schwab TD; Oxland TR
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):932-40. PubMed ID: 17602807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of a stretched nonlinear polymer chain.
    Febbo M; Milchev A; Rostiashvili V; Dimitrov D; Vilgis TA
    J Chem Phys; 2008 Oct; 129(15):154908. PubMed ID: 19045230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching.
    Izvekov S; Parrinello M; Burnham CJ; Voth GA
    J Chem Phys; 2004 Jun; 120(23):10896-913. PubMed ID: 15268120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.