BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 20001686)

  • 1. Diffusion tensor imaging at 3 hours after traumatic spinal cord injury predicts long-term locomotor recovery.
    Kim JH; Loy DN; Wang Q; Budde MD; Schmidt RE; Trinkaus K; Song SK
    J Neurotrauma; 2010 Mar; 27(3):587-98. PubMed ID: 20001686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical and functional outcomes following a precise, graded, dorsal laceration spinal cord injury in C57BL/6 mice.
    Hill RL; Zhang YP; Burke DA; Devries WH; Zhang Y; Magnuson DS; Whittemore SR; Shields CB
    J Neurotrauma; 2009 Jan; 26(1):1-15. PubMed ID: 19196178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive locomotor outcomes correlate to hyperacute diffusion tensor measures after spinal cord injury in the adult rat.
    Kim JH; Song SK; Burke DA; Magnuson DS
    Exp Neurol; 2012 May; 235(1):188-96. PubMed ID: 22119625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion tensor imaging predicts hyperacute spinal cord injury severity.
    Loy DN; Kim JH; Xie M; Schmidt RE; Trinkaus K; Song SK
    J Neurotrauma; 2007 Jun; 24(6):979-90. PubMed ID: 17600514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full tensor diffusion imaging is not required to assess the white-matter integrity in mouse contusion spinal cord injury.
    Tu TW; Kim JH; Wang J; Song SK
    J Neurotrauma; 2010 Jan; 27(1):253-62. PubMed ID: 19715399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid functional recovery after spinal cord injury in young rats.
    Brown KM; Wolfe BB; Wrathall JR
    J Neurotrauma; 2005 May; 22(5):559-74. PubMed ID: 15892601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal assessment of white matter pathology in the injured mouse spinal cord through ultra-high field (16.4 T) in vivo diffusion tensor imaging.
    Brennan FH; Cowin GJ; Kurniawan ND; Ruitenberg MJ
    Neuroimage; 2013 Nov; 82():574-85. PubMed ID: 23770410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery.
    Kelley BJ; Harel NY; Kim CY; Papademetris X; Coman D; Wang X; Hasan O; Kaufman A; Globinsky R; Staib LH; Cafferty WB; Hyder F; Strittmatter SM
    J Neurotrauma; 2014 Aug; 31(15):1362-73. PubMed ID: 24779685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord compression injury in the mouse: presentation of a model including assessment of motor dysfunction.
    Farooque M
    Acta Neuropathol; 2000 Jul; 100(1):13-22. PubMed ID: 10912915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional consequences of ethidium bromide demyelination of the mouse ventral spinal cord.
    Kuypers NJ; James KT; Enzmann GU; Magnuson DS; Whittemore SR
    Exp Neurol; 2013 Sep; 247():615-22. PubMed ID: 23466931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing Pathological Variation of White Matter Tract in Adult Rats after Severe Spinal Cord Injury with MRI.
    Song W; Song G; Zhao C; Li X; Pei X; Zhao W; Gao Y; Rao JS; Duan H; Yang Z
    Biomed Res Int; 2018; 2018():4068156. PubMed ID: 30534561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing white matter damage in rat spinal cord with quantitative MRI and histology.
    Kozlowski P; Raj D; Liu J; Lam C; Yung AC; Tetzlaff W
    J Neurotrauma; 2008 Jun; 25(6):653-76. PubMed ID: 18578635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of axonal sprouting of spared propriospinal fibers caudal to spinal contusion injury is attributed to chronic axonopathy.
    Steencken AC; Siebert JR; Stelzner DJ
    J Neurotrauma; 2009 Dec; 26(12):2279-97. PubMed ID: 19645528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat.
    Collazos-Castro JE; Soto VM; Gutiérrez-Dávila M; Nieto-Sampedro M
    J Neurotrauma; 2005 May; 22(5):544-58. PubMed ID: 15892600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serial Diffusion Tensor Imaging In Vivo Predicts Long-Term Functional Recovery and Histopathology in Rats following Different Severities of Spinal Cord Injury.
    Patel SP; Smith TD; VanRooyen JL; Powell D; Cox DH; Sullivan PG; Rabchevsky AG
    J Neurotrauma; 2016 May; 33(10):917-28. PubMed ID: 26650623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mouse model of graded contusive spinal cord injury.
    Kuhn PL; Wrathall JR
    J Neurotrauma; 1998 Feb; 15(2):125-40. PubMed ID: 9512088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forelimb locomotor assessment scale (FLAS): novel assessment of forelimb dysfunction after cervical spinal cord injury.
    Anderson KD; Sharp KG; Hofstadter M; Irvine KA; Murray M; Steward O
    Exp Neurol; 2009 Nov; 220(1):23-33. PubMed ID: 19733168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.