BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20002180)

  • 1. Stable carbon isotope fractionation by acetotrophic sulfur-reducing bacteria.
    Goevert D; Conrad R
    FEMS Microbiol Ecol; 2010 Feb; 71(2):218-25. PubMed ID: 20002180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.
    Goevert D; Conrad R
    Environ Sci Technol; 2008 Nov; 42(21):7813-7. PubMed ID: 19031865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria.
    Pombo SA; Kleikemper J; Schroth MH; Zeyer J
    FEMS Microbiol Ecol; 2005 Jan; 51(2):197-207. PubMed ID: 16329868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.
    Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ
    Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
    Veit A; Rittmann D; Georgi T; Youn JW; Eikmanns BJ; Wendisch VF
    J Biotechnol; 2009 Mar; 140(1-2):75-83. PubMed ID: 19162097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes.
    Detmers J; Brüchert V; Habicht KS; Kuever J
    Appl Environ Microbiol; 2001 Feb; 67(2):888-94. PubMed ID: 11157259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinyl-CoA:acetate CoA-transferase functioning in the oxidative tricarboxylic acid cycle in
    Pettinato E; Böhnert P; Berg IA
    Front Microbiol; 2022; 13():1080142. PubMed ID: 36569052
    [No Abstract]   [Full Text] [Related]  

  • 8. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65 degrees C temperatures is limited by acetate oxidation.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Water Res; 2007 Jun; 41(12):2706-14. PubMed ID: 17418880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorans and in rice field soil.
    Goevert D; Conrad R
    Appl Environ Microbiol; 2009 May; 75(9):2605-12. PubMed ID: 19251888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphur isotope fractionation during the reduction of elemental sulphur and thiosulphate by Dethiosulfovibrio spp.
    Surkov AV; Böttcher ME; Kuever J
    Isotopes Environ Health Stud; 2012; 48(1):65-75. PubMed ID: 22321313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria.
    Abu Laban N; Selesi D; Jobelius C; Meckenstock RU
    FEMS Microbiol Ecol; 2009 Jun; 68(3):300-11. PubMed ID: 19416354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of carbon addition and predation on acetate-assimilating bacterial cells in groundwater.
    Longnecker K; Da Costa A; Bhatia M; Kujawinski EB
    FEMS Microbiol Ecol; 2009 Dec; 70(3):456-70. PubMed ID: 19744236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA.
    Schwarz JI; Lueders T; Eckert W; Conrad R
    Environ Microbiol; 2007 Jan; 9(1):223-37. PubMed ID: 17227427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso- (3-methyl) and iso- (2-methyl) alkanes in tobacco leaves.
    Grice K; Lu H; Zhou Y; Stuart-Williams H; Farquhar GD
    Phytochemistry; 2008 Nov; 69(16):2807-14. PubMed ID: 18954883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach.
    Fischer A; Gehre M; Breitfeld J; Richnow HH; Vogt C
    Rapid Commun Mass Spectrom; 2009 Aug; 23(16):2439-47. PubMed ID: 19603470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different carbon substrates on nitrate stable isotope fractionation during microbial denitrification.
    Wunderlich A; Meckenstock R; Einsiedl F
    Environ Sci Technol; 2012 May; 46(9):4861-8. PubMed ID: 22458947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon isotope fractionation of 11 acetogenic strains grown on H2 and CO2.
    Blaser MB; Dreisbach LK; Conrad R
    Appl Environ Microbiol; 2013 Mar; 79(6):1787-94. PubMed ID: 23275504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane.
    Hirschorn SK; Dinglasan-Panlilio MJ; Edwards EA; Lacrampe-Couloume G; Sherwood Lollar B
    Environ Microbiol; 2007 Jul; 9(7):1651-7. PubMed ID: 17564600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining in situ microcosms and stable isotope probing techniques.
    Bombach P; Chatzinotas A; Neu TR; Kästner M; Lueders T; Vogt C
    FEMS Microbiol Ecol; 2010 Feb; 71(2):237-46. PubMed ID: 19951369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.