These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20002326)

  • 1. Reactive oxygen species from type-I photosensitized reactions contribute to the light-induced wilting of dark-grown pea (Pisum sativum) epicotyls.
    Hideg E; Vitányi B; Kósa A; Solymosi K; Bóka K; Won S; Inoue Y; Ridge RW; Böddi B
    Physiol Plant; 2010 Apr; 138(4):485-92. PubMed ID: 20002326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-induced wilting and its molecular mechanism in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings.
    Erdei N; Barta C; Hideg E; Böddi B
    Plant Cell Physiol; 2005 Jan; 46(1):185-91. PubMed ID: 15659444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls.
    Erdei AL; Kósa A; Böddi B
    Photosynth Res; 2019 Apr; 140(1):93-102. PubMed ID: 30225812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions.
    Vitányi B; Kósa A; Solymosi K; Böddi B
    Physiol Plant; 2013 Jun; 148(2):307-15. PubMed ID: 23067197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential regeneration of the NADPH: protochlorophyllide oxidoreductase oligomer complexes in pea epicotyls after bleaching.
    Szenzenstein A; Kósa A; Solymosi K; Sárvári E; Böddi B
    Physiol Plant; 2010 Jan; 138(1):102-12. PubMed ID: 20070845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distribution of protochlorophyllide and chlorophyll within seedlings of the lip1 mutant of Pea.
    Seyedi M; Timko MP; Sundqvist C
    Plant Cell Physiol; 2001 Sep; 42(9):931-41. PubMed ID: 11577187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological variability in the ratios of protochlorophyllide forms in leaves and epicotyls of dark-grown pea (Pisum sativum L.) seedlings (a statistical method to resolve complex spectra).
    Szenzenstein A; Kósa A; Böddi B
    J Photochem Photobiol B; 2008 Feb; 90(2):88-94. PubMed ID: 18178095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation.
    Mai VC; Bednarski W; Borowiak-Sobkowiak B; Wilkaniec B; Samardakiewicz S; Morkunas I
    Phytochemistry; 2013 Sep; 93():49-62. PubMed ID: 23566717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings.
    Roach T; Kranner I
    J Plant Physiol; 2011 Oct; 168(15):1870-3. PubMed ID: 21752488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement for the gravity-controlled transport of auxin for a negative gravitropic response of epicotyls in the early growth stage of etiolated pea seedlings.
    Hoshino T; Miyamoto K; Ueda J
    Plant Cell Physiol; 2006 Nov; 47(11):1496-508. PubMed ID: 17008444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Up-regulation by phytochrome A of the active protochlorophyllide, Pchlide655, biosynthesis in dicots under far-red light.
    Sineshchekov V; Belyaeva O; Sudnitsin A
    J Photochem Photobiol B; 2004 Mar; 74(1):47-54. PubMed ID: 15043846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.
    Urquhart S; Foo E; Reid JB
    Physiol Plant; 2015 Mar; 153(3):392-402. PubMed ID: 24962787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings.
    Roach T; Colville L; Beckett RP; Minibayeva FV; Havaux M; Kranner I
    Phytochemistry; 2015 Apr; 112():130-8. PubMed ID: 24996671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The involvement of indole-3-acetic acid in the control of stem elongation in dark- and light-grown pea (Pisum sativum) seedlings.
    Sorce C; Picciarelli P; Calistri G; Lercari B; Ceccarelli N
    J Plant Physiol; 2008; 165(5):482-9. PubMed ID: 17706834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the chloroplast plastoquinone pool in the Mehler reaction.
    Vetoshkina DV; Ivanov BN; Khorobrykh SA; Proskuryakov II; Borisova-Mubarakshina MM
    Physiol Plant; 2017 Sep; 161(1):45-55. PubMed ID: 28256000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings.
    Tripathi DK; Singh S; Singh S; Srivastava PK; Singh VP; Singh S; Prasad SM; Singh PK; Dubey NK; Pandey AC; Chauhan DK
    Plant Physiol Biochem; 2017 Jan; 110():167-177. PubMed ID: 27449300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravity-controlled asymmetrical transport of auxin regulates a gravitropic response in the early growth stage of etiolated pea (Pisum sativum) epicotyls: studies using simulated microgravity conditions on a three-dimensional clinostat and using an agravitropic mutant, ageotropum.
    Hoshino T; Miyamoto K; Ueda J
    J Plant Res; 2007 Sep; 120(5):619-28. PubMed ID: 17712525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dark-adaptation response of the de-etiolated pea mutant lip1 is modulated by external signals and endogenous programs.
    Frances S; Thompson WF
    Plant Physiol; 1997 Sep; 115(1):23-8. PubMed ID: 9306689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Active oxygen species in pea seedlings during the interactions with symbiotic and pathogenic microorganisms].
    Vasil'eva GG; Glian'ko AK; Mironova NV; Putilina TE; Luzova GB
    Prikl Biokhim Mikrobiol; 2007; 43(2):240-5. PubMed ID: 17476814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbic acid and the oxidative processes in pea root cell wall isolates: characterization by fluorescence and EPR spectroscopy.
    Veljović-Jovanović S; Kukavica B; Cvetić T; Mojović M; Vucinić Z
    Ann N Y Acad Sci; 2005 Jun; 1048():500-4. PubMed ID: 16154986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.