These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 20002515)
21. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors. Marcoli M; Cervetto C; Paluzzi P; Guarnieri S; Raiteri M; Maura G Neurochem Int; 2006 Jul; 49(1):12-9. PubMed ID: 16469416 [TBL] [Abstract][Full Text] [Related]
22. Neuroprotection of gamma-aminobutyric acid receptor agonists via enhancing neuronal nitric oxide synthase (Ser847) phosphorylation through increased neuronal nitric oxide synthase and PSD95 interaction and inhibited protein phosphatase activity in cerebral ischemia. Zhou C; Li C; Yu HM; Zhang F; Han D; Zhang GY J Neurosci Res; 2008 Oct; 86(13):2973-83. PubMed ID: 18512761 [TBL] [Abstract][Full Text] [Related]
23. Modulation of NMDA receptor function by cyclic AMP in cerebellar neurones in culture. Llansola M; Sánchez-Pérez AM; Montoliu C; Felipo V J Neurochem; 2004 Nov; 91(3):591-9. PubMed ID: 15485490 [TBL] [Abstract][Full Text] [Related]
24. NMDA receptor-dependent nitric oxide and cGMP synthesis in brain hemispheres and cerebellum during reperfusion after transient forebrain ischemia in gerbils: effect of 7-Nitroindazole. Chalimoniuk M; Strosznajder J J Neurosci Res; 1998 Dec; 54(5):681-90. PubMed ID: 9843159 [TBL] [Abstract][Full Text] [Related]
25. Bed nucleus of the stria terminalis N-methyl-D-aspartate receptors and nitric oxide modulate the baroreflex cardiac component in unanesthetized rats. Alves FH; Crestani CC; Resstel LB; Correa FM J Neurosci Res; 2009 May; 87(7):1703-11. PubMed ID: 19156861 [TBL] [Abstract][Full Text] [Related]
26. Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Rodrigo R; Cauli O; Boix J; ElMlili N; Agusti A; Felipo V Neurochem Int; 2009; 55(1-3):113-8. PubMed ID: 19428814 [TBL] [Abstract][Full Text] [Related]
27. Impairment of neuronal nitric oxide synthase-dependent dilation of cerebral arterioles during chronic alcohol consumption. Sun H; Patel KP; Mayhan WG Alcohol Clin Exp Res; 2002 May; 26(5):663-70. PubMed ID: 12045474 [TBL] [Abstract][Full Text] [Related]
28. NMDA receptor activation induces glutamate release through nitric oxide synthesis in guinea pig dentate gyrus. Nei K; Matsuyama S; Shuntoh H; Tanaka C Brain Res; 1996 Jul; 728(1):105-10. PubMed ID: 8864303 [TBL] [Abstract][Full Text] [Related]
29. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related]
30. Coupling between neuronal nitric oxide synthase and glutamate receptor 6-mediated c-Jun N-terminal kinase signaling pathway via S-nitrosylation contributes to ischemia neuronal death. Yu HM; Xu J; Li C; Zhou C; Zhang F; Han D; Zhang GY Neuroscience; 2008 Sep; 155(4):1120-32. PubMed ID: 18676085 [TBL] [Abstract][Full Text] [Related]
31. Tissue kallikrein alleviates glutamate-induced neurotoxicity by activating ERK1. Liu L; Zhang R; Liu K; Zhou H; Tang Y; Su J; Yu X; Yang X; Tang M; Dong Q J Neurosci Res; 2009 Dec; 87(16):3576-90. PubMed ID: 19598250 [TBL] [Abstract][Full Text] [Related]
32. Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution. Abulrob A; Tauskela JS; Mealing G; Brunette E; Faid K; Stanimirovic D J Neurochem; 2005 Mar; 92(6):1477-86. PubMed ID: 15748165 [TBL] [Abstract][Full Text] [Related]
33. L-2-chloropropionic acid-induced neurotoxicity is prevented by MK-801: possible role of NMDA receptors in the neuropathology. Widdowson PS; Wyatt I; Gyte A; Simpson MG; Lock EA Toxicol Appl Pharmacol; 1996 Jan; 136(1):138-45. PubMed ID: 8560467 [TBL] [Abstract][Full Text] [Related]
35. Nicotine administration stimulates the in vivo N-methyl-D-aspartate receptor/nitric oxide/cyclic GMP pathway in rat hippocampus through glutamate release. Fedele E; Varnier G; Ansaldo MA; Raiteri M Br J Pharmacol; 1998 Nov; 125(5):1042-8. PubMed ID: 9846643 [TBL] [Abstract][Full Text] [Related]
36. [Participation of receptors of the NMDA type in regulation by glutamate of alimentary motor program of the freshwater mollusc lymnaea stagnalis]. D'iakonova TL; D'iakonova VE Zh Evol Biokhim Fiziol; 2010; 46(1):45-51. PubMed ID: 20297669 [TBL] [Abstract][Full Text] [Related]
37. Modulation of NMDA receptors by AKT kinase. Sánchez-Pérez AM; Llansola M; Felipo V Neurochem Int; 2006 Sep; 49(4):351-8. PubMed ID: 16621159 [TBL] [Abstract][Full Text] [Related]
38. The anticonvulsant activity and cerebral protection of chronic lithium chloride via NMDA receptor/nitric oxide and phospho-ERK. Mohammad Jafari R; Ghahremani MH; Rahimi N; Shadboorestan A; Rashidian A; Esmaeili J; Ejtemaei Mehr S; Dehpour AR Brain Res Bull; 2018 Mar; 137():1-9. PubMed ID: 29102713 [TBL] [Abstract][Full Text] [Related]
39. Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. Gonzalez-Usano A; Cauli O; Agusti A; Felipo V ACS Chem Neurosci; 2014 Feb; 5(2):100-5. PubMed ID: 24256194 [TBL] [Abstract][Full Text] [Related]
40. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Rodrigo R; Cauli O; Gomez-Pinedo U; Agusti A; Hernandez-Rabaza V; Garcia-Verdugo JM; Felipo V Gastroenterology; 2010 Aug; 139(2):675-84. PubMed ID: 20303348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]