BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20002866)

  • 1. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations.
    de Melo HF; Bonini BM; Thevelein J; Simões DA; Morais MA
    J Appl Microbiol; 2010 Jul; 109(1):116-27. PubMed ID: 20002866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2.
    Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae employs complex regulation strategies to tolerate low pH stress during ethanol production.
    Wu Y; Li B; Miao B; Xie C; Tang YQ
    Microb Cell Fact; 2022 Nov; 21(1):247. PubMed ID: 36419096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Interaction between HOG1 and SLT2 Genes in Signalling the Cellular Stress Caused by Sulphuric Acid in Saccharomyces cerevisiae.
    de Lucena RM; Elsztein C; Barros de Souza R; de Barros Pita W; Paiva Sde S; de Morais MA
    J Mol Microbiol Biotechnol; 2015; 25(6):423-7. PubMed ID: 26845706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress.
    de Lucena RM; Elsztein C; de Barros Pita W; de Souza RB; de Sá Leitão Paiva Júnior S; de Morais Junior MA
    Antonie Van Leeuwenhoek; 2015 Nov; 108(5):1147-60. PubMed ID: 26362331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.
    Kong II; Turner TL; Kim H; Kim SR; Jin YS
    FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29325040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation.
    da Silva Filho EA; de Melo HF; Antunes DF; dos Santos SK; do Monte Resende A; Simões DA; de Morais MA
    J Ind Microbiol Biotechnol; 2005 Oct; 32(10):481-6. PubMed ID: 16175407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications.
    Della-Bianca BE; de Hulster E; Pronk JT; van Maris AJ; Gombert AK
    FEMS Yeast Res; 2014 Dec; 14(8):1196-205. PubMed ID: 25263709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress.
    Matsushika A; Suzuki T; Goshima T; Hoshino T
    J Biosci Bioeng; 2017 Aug; 124(2):164-170. PubMed ID: 28476241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.
    Della-Bianca BE; Gombert AK
    Antonie Van Leeuwenhoek; 2013 Dec; 104(6):1083-95. PubMed ID: 24062068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid.
    de Lucena RM; Elsztein C; Simões DA; de Morais MA
    J Appl Microbiol; 2012 Sep; 113(3):629-40. PubMed ID: 22702539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ; Lin XH; Li H
    Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigating stress in industrial yeasts.
    Walker GM; Basso TO
    Fungal Biol; 2020 May; 124(5):387-397. PubMed ID: 32389301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.
    Hou L
    Appl Biochem Biotechnol; 2010 Feb; 160(4):1084-93. PubMed ID: 19214789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating.
    Mitsumasu K; Liu ZS; Tang YQ; Akamatsu T; Taguchi H; Kida K
    J Biosci Bioeng; 2014 Dec; 118(6):689-95. PubMed ID: 24958128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation.
    Li BZ; Cheng JS; Qiao B; Yuan YJ
    J Ind Microbiol Biotechnol; 2010 Jan; 37(1):43-55. PubMed ID: 19821132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments.
    Fletcher E; Feizi A; Bisschops MMM; Hallström BM; Khoomrung S; Siewers V; Nielsen J
    Metab Eng; 2017 Jan; 39():19-28. PubMed ID: 27815194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol.
    Cot M; Loret MO; François J; Benbadis L
    FEMS Yeast Res; 2007 Jan; 7(1):22-32. PubMed ID: 17005001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Abbott DA; Suir E; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2008 Sep; 74(18):5759-68. PubMed ID: 18676708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells.
    Nielsen JC; Senne de Oliveira Lino F; Rasmussen TG; Thykær J; Workman CT; Basso TO
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8237-8248. PubMed ID: 28993899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.