These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 20003348)

  • 1. Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain.
    Izergina N; Balmer J; Bello B; Reichert H
    Neural Dev; 2009 Dec; 4():44. PubMed ID: 20003348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain.
    Jiang Y; Reichert H
    Neural Dev; 2012 Jan; 7():3. PubMed ID: 22257485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development.
    Viktorin G; Riebli N; Popkova A; Giangrande A; Reichert H
    Dev Biol; 2011 Aug; 356(2):553-65. PubMed ID: 21708145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila.
    Riebli N; Viktorin G; Reichert H
    Neural Dev; 2013 Apr; 8():6. PubMed ID: 23618231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development.
    Dumstrei K; Wang F; Hartenstein V
    J Neurosci; 2003 Apr; 23(8):3325-35. PubMed ID: 12716940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development.
    Bello BC; Izergina N; Caussinus E; Reichert H
    Neural Dev; 2008 Feb; 3():5. PubMed ID: 18284664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain.
    Kuert PA; Hartenstein V; Bello BC; Lovick JK; Reichert H
    Dev Biol; 2014 Jun; 390(2):102-15. PubMed ID: 24713419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multipotent transit-amplifying neuroblast lineage in the central brain gives rise to optic lobe glial cells in Drosophila.
    Viktorin G; Riebli N; Reichert H
    Dev Biol; 2013 Jul; 379(2):182-94. PubMed ID: 23628691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells.
    Boone JQ; Doe CQ
    Dev Neurobiol; 2008 Aug; 68(9):1185-95. PubMed ID: 18548484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex.
    Yang JS; Awasaki T; Yu HH; He Y; Ding P; Kao JC; Lee T
    J Comp Neurol; 2013 Aug; 521(12):2645-Spc1. PubMed ID: 23696496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain.
    Colonques J; Ceron J; Tejedor FJ
    Mech Dev; 2007 May; 124(5):327-40. PubMed ID: 17344035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin.
    Dumstrei K; Wang F; Nassif C; Hartenstein V
    J Comp Neurol; 2003 Jan; 455(4):451-62. PubMed ID: 12508319
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Nguyen PK; Cheng LY
    Elife; 2024 Jun; 13():. PubMed ID: 38905123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system.
    Das A; Gupta T; Davla S; Prieto-Godino LL; Diegelmann S; Reddy OV; Raghavan KV; Reichert H; Lovick J; Hartenstein V
    Dev Biol; 2013 Jan; 373(2):322-37. PubMed ID: 23149077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis of Drosophila.
    Bello B; Holbro N; Reichert H
    Development; 2007 Mar; 134(6):1091-9. PubMed ID: 17287254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.
    Lovick JK; Kong A; Omoto JJ; Ngo KT; Younossi-Hartenstein A; Hartenstein V
    Dev Neurobiol; 2016 Apr; 76(4):434-51. PubMed ID: 26178322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex.
    Bayraktar OA; Boone JQ; Drummond ML; Doe CQ
    Neural Dev; 2010 Oct; 5():26. PubMed ID: 20920301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila.
    Bello B; Reichert H; Hirth F
    Development; 2006 Jul; 133(14):2639-48. PubMed ID: 16774999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain.
    Spindler SR; Ortiz I; Fung S; Takashima S; Hartenstein V
    Dev Biol; 2009 Oct; 334(2):355-68. PubMed ID: 19646433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage.
    Pereanu W; Hartenstein V
    J Neurosci; 2006 May; 26(20):5534-53. PubMed ID: 16707805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.