These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20003382)

  • 1. The impact of measurement errors in the identification of regulatory networks.
    Fujita A; Patriota AG; Sato JR; Miyano S
    BMC Bioinformatics; 2009 Dec; 10():412. PubMed ID: 20003382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mAPC-GibbsOS: an integrated approach for robust identification of gene regulatory networks.
    Shi X; Gu J; Chen X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Syst Biol; 2013; 7 Suppl 5(Suppl 5):S4. PubMed ID: 24564939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regularized estimation of large-scale gene association networks using graphical Gaussian models.
    Krämer N; Schäfer J; Boulesteix AL
    BMC Bioinformatics; 2009 Nov; 10():384. PubMed ID: 19930695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.
    Noor A; Serpedin E; Nounou M; Nounou HN
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1203-11. PubMed ID: 22350207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State Estimation for Discrete Time-Delayed Genetic Regulatory Networks With Stochastic Noises Under the Round-Robin Protocols.
    Wan X; Wang Z; Wu M; Liu X; Xiongbo Wan ; Zidong Wang ; Min Wu ; Xiaohui Liu ; Liu X; Wang Z; Wu M; Wan X
    IEEE Trans Nanobioscience; 2018 Apr; 17(2):145-154. PubMed ID: 29870338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are scale-free networks robust to measurement errors?
    Lin N; Zhao H
    BMC Bioinformatics; 2005 May; 6():119. PubMed ID: 15904487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of discretization methods of microarray data for inferring transcriptional regulatory networks.
    Li Y; Liu L; Bai X; Cai H; Ji W; Guo D; Zhu Y
    BMC Bioinformatics; 2010 Oct; 11():520. PubMed ID: 20955620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling gene expression regulatory networks with the sparse vector autoregressive model.
    Fujita A; Sato JR; Garay-Malpartida HM; Yamaguchi R; Miyano S; Sogayar MC; Ferreira CE
    BMC Syst Biol; 2007 Aug; 1():39. PubMed ID: 17761000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene regulatory network clustering for graph layout based on microarray gene expression data.
    Kojima K; Imoto S; Nagasaki M; Miyano S
    Genome Inform; 2010; 24():84-95. PubMed ID: 22081591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parallel implementation of the network identification by multiple regression (NIR) algorithm to reverse-engineer regulatory gene networks.
    Gregoretti F; Belcastro V; di Bernardo D; Oliva G
    PLoS One; 2010 Apr; 5(4):e10179. PubMed ID: 20422008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-platform microarray data normalisation for regulatory network inference.
    Sîrbu A; Ruskin HJ; Crane M
    PLoS One; 2010 Nov; 5(11):e13822. PubMed ID: 21103045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integer optimization algorithm for robust identification of non-linear gene regulatory networks.
    Chemmangattuvalappil N; Task K; Banerjee I
    BMC Syst Biol; 2012 Sep; 6():119. PubMed ID: 22937832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring gene regulatory networks from asynchronous microarray data with AIRnet.
    Oviatt D; Clement M; Snell Q; Sundberg K; Lai CW; Allen J; Roper R
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S6. PubMed ID: 21047387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification.
    Zhang W; Edwards A; Fan W; Zhu D; Zhang K
    BMC Bioinformatics; 2010 Jun; 11():338. PubMed ID: 20565989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing directed signed gene regulatory network from microarray data.
    Qiu P; Plevritis SK
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3518-21. PubMed ID: 21803675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data.
    Chan SC; Zhang L; Wu HC; Tsui KM
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):123-35. PubMed ID: 26357083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory.
    Sayyed-Ahmad A; Tuncay K; Ortoleva PJ
    BMC Bioinformatics; 2007 Jan; 8():20. PubMed ID: 17244365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring regulatory networks.
    Li H; Xuan J; Wang Y; Zhan M
    Front Biosci; 2008 Jan; 13():263-75. PubMed ID: 17981545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying regulational alterations in gene regulatory networks by state space representation of vector autoregressive models and variational annealing.
    Kojima K; Imoto S; Yamaguchi R; Fujita A; Yamauchi M; Gotoh N; Miyano S
    BMC Genomics; 2012; 13 Suppl 1(Suppl 1):S6. PubMed ID: 22369122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.
    Margolin AA; Nemenman I; Basso K; Wiggins C; Stolovitzky G; Dalla Favera R; Califano A
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S7. PubMed ID: 16723010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.