These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20003393)

  • 1. TIM-Finder: a new method for identifying TIM-barrel proteins.
    Si JN; Yan RX; Wang C; Zhang Z; Su XD
    BMC Struct Biol; 2009 Dec; 9():73. PubMed ID: 20003393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DescFold: a web server for protein fold recognition.
    Yan RX; Si JN; Wang C; Zhang Z
    BMC Bioinformatics; 2009 Dec; 10():416. PubMed ID: 20003426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descriptor-based protein remote homology identification.
    Zhang Z; Kochhar S; Grigorov MG
    Protein Sci; 2005 Feb; 14(2):431-44. PubMed ID: 15632283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism.
    Goldman AD; Beatty JT; Landweber LF
    J Mol Evol; 2016 Jan; 82(1):17-26. PubMed ID: 26733481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The TIM-barrel fold: a versatile framework for efficient enzymes.
    Wierenga RK
    FEBS Lett; 2001 Mar; 492(3):193-8. PubMed ID: 11257493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into TIM-barrel prenyl transferase mechanisms: crystal structures of PcrB from Bacillus subtilis and Staphylococcus aureus.
    Ren F; Feng X; Ko TP; Huang CH; Hu Y; Chan HC; Liu YL; Wang K; Chen CC; Pang X; He M; Li Y; Oldfield E; Guo RT
    Chembiochem; 2013 Jan; 14(2):195-9. PubMed ID: 23322418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frustration and folding of a TIM barrel protein.
    Halloran KT; Wang Y; Arora K; Chakravarthy S; Irving TC; Bilsel O; Brooks CL; Matthews CR
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16378-16383. PubMed ID: 31346089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of beta/alpha-unit scrambled forms of S. cerevisiae triosephosphate isomerase: Evidence for autonomy of substructure formation and plasticity of hydrophobic and hydrogen bonding interactions in core of (beta/alpha)8-barrel.
    Shukla A; Guptasarma P
    Proteins; 2004 May; 55(3):548-57. PubMed ID: 15103619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the fold organization of TIM barrel from interaction energy based structure networks.
    Vijayabaskar MS; Vishveshwara S
    PLoS Comput Biol; 2012; 8(5):e1002505. PubMed ID: 22615547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the structure of folding cores in TIM barrel proteins by hydrogen exchange mass spectrometry: the roles of motif and sequence for the indole-3-glycerol phosphate synthase from Sulfolobus solfataricus.
    Gu Z; Zitzewitz JA; Matthews CR
    J Mol Biol; 2007 Apr; 368(2):582-94. PubMed ID: 17359995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase.
    Walden H; Bell GS; Russell RJ; Siebers B; Hensel R; Taylor GL
    J Mol Biol; 2001 Mar; 306(4):745-57. PubMed ID: 11243785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold.
    Kadumuri RV; Vadrevu R
    Interdiscip Sci; 2018 Dec; 10(4):805-812. PubMed ID: 29064074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse engineering the (beta/alpha )8 barrel fold.
    Silverman JA; Balakrishnan R; Harbury PB
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3092-7. PubMed ID: 11248037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into N-terminal to C-terminal interactions and implications for thermostability of a (β/α)8-triosephosphate isomerase barrel enzyme.
    Mahanta P; Bhardwaj A; Kumar K; Reddy VS; Ramakumar S
    FEBS J; 2015 Sep; 282(18):3543-55. PubMed ID: 26102498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based directed evolution of a monomeric triosephosphate isomerase: toward a pentose sugar isomerase.
    Krause M; Neubauer P; Wierenga RK
    Protein Eng Des Sel; 2015 Jun; 28(6):187-97. PubMed ID: 25767111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of two bacterial 3-hydroxy-3-methylglutaryl-CoA lyases suggest a common catalytic mechanism among a family of TIM barrel metalloenzymes cleaving carbon-carbon bonds.
    Forouhar F; Hussain M; Farid R; Benach J; Abashidze M; Edstrom WC; Vorobiev SM; Xiao R; Acton TB; Fu Z; Kim JJ; Miziorko HM; Montelione GT; Hunt JF
    J Biol Chem; 2006 Mar; 281(11):7533-45. PubMed ID: 16330546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design.
    Velanker SS; Ray SS; Gokhale RS; Suma S; Balaram H; Balaram P; Murthy MR
    Structure; 1997 Jun; 5(6):751-61. PubMed ID: 9261072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop.
    Borchert TV; Abagyan R; Kishan KV; Zeelen JP; Wierenga RK
    Structure; 1993 Nov; 1(3):205-13. PubMed ID: 16100954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The equilibrium unfolding pathway of a (beta/alpha)8 barrel.
    Silverman JA; Harbury PB
    J Mol Biol; 2002 Dec; 324(5):1031-40. PubMed ID: 12470957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An obligatory intermediate controls the folding of the alpha-subunit of tryptophan synthase, a TIM barrel protein.
    Wintrode PL; Rojsajjakul T; Vadrevu R; Matthews CR; Smith DL
    J Mol Biol; 2005 Apr; 347(5):911-9. PubMed ID: 15784252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.