These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 20003737)
1. Hollow-fiber ultrafiltration for the concentration and simultaneous recovery of multiple pathogens in contaminated foods. Kim HY; Park HJ; Ko G J Food Prot; 2009 Dec; 72(12):2547-52. PubMed ID: 20003737 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of various methods for recovering human norovirus and murine norovirus from vegetables and ham. Park H; Kim M; Ko G J Food Prot; 2010 Sep; 73(9):1651-7. PubMed ID: 20828471 [TBL] [Abstract][Full Text] [Related]
3. Dead-end hollow-fiber ultrafiltration for recovery of diverse microbes from water. Smith CM; Hill VR Appl Environ Microbiol; 2009 Aug; 75(16):5284-9. PubMed ID: 19561183 [TBL] [Abstract][Full Text] [Related]
4. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Hill VR; Kahler AM; Jothikumar N; Johnson TB; Hahn D; Cromeans TL Appl Environ Microbiol; 2007 Jul; 73(13):4218-25. PubMed ID: 17483281 [TBL] [Abstract][Full Text] [Related]
5. Uncertainty analysis of the recovery of hollow-fiber ultrafiltration for multiple microbe classes from water: a Bayesian approach. Wu J; Simmons OD; Sobsey MD J Microbiol Methods; 2013 Jun; 93(3):161-7. PubMed ID: 23524155 [TBL] [Abstract][Full Text] [Related]
6. Comparison of internal process control viruses for detection of food and waterborne viruses. Blanco Fernández MD; Barrios ME; Cammarata RV; Torres C; Taboga OA; Mbayed VA Appl Microbiol Biotechnol; 2017 May; 101(10):4289-4298. PubMed ID: 28357543 [TBL] [Abstract][Full Text] [Related]
7. The use of hollow fiber dialysis filters operated in axial flow mode for recovery of microorganisms in large volume water samples with high loadings of particulate matter. Gallardo VJ; Morris BJ; Rhodes ER J Microbiol Methods; 2019 May; 160():143-153. PubMed ID: 30974128 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of hollow-fiber ultrafiltration primary concentration of pathogens and secondary concentration of viruses from water. Rhodes ER; Hamilton DW; See MJ; Wymer L J Virol Methods; 2011 Sep; 176(1-2):38-45. PubMed ID: 21664379 [TBL] [Abstract][Full Text] [Related]
9. Comparison of two extraction methods for viruses in food and application in a norovirus gastroenteritis outbreak. Scherer K; Johne R; Schrader C; Ellerbroek L; Schulenburg J; Klein G J Virol Methods; 2010 Oct; 169(1):22-7. PubMed ID: 20600331 [TBL] [Abstract][Full Text] [Related]
10. Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water. Liu P; Hill VR; Hahn D; Johnson TB; Pan Y; Jothikumar N; Moe CL J Microbiol Methods; 2012 Jan; 88(1):155-61. PubMed ID: 22108496 [TBL] [Abstract][Full Text] [Related]
11. Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Morales-Morales HA; Vidal G; Olszewski J; Rock CM; Dasgupta D; Oshima KH; Smith GB Appl Environ Microbiol; 2003 Jul; 69(7):4098-102. PubMed ID: 12839786 [TBL] [Abstract][Full Text] [Related]
12. Optimization of an Adsorption-Elution Method with a Negatively Charged Membrane to Recover Norovirus from Lettuce. de Abreu Corrêa A; Miagostovich MP Food Environ Virol; 2013 May; ():. PubMed ID: 23649411 [TBL] [Abstract][Full Text] [Related]
13. Multiplex PCR method for the detection of human norovirus, Salmonella spp., Shigella spp., and shiga toxin producing Escherichia coli in blackberry, coriander, lettuce and strawberry. Hernández Hernández O; Gutiérrez-Escolano AL; Cancio-Lonches C; Iturriaga MH; Pacheco-Aguilar JR; Morales-Rayas R; Arvizu-Medrano SM Food Microbiol; 2022 Apr; 102():103926. PubMed ID: 34809952 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of viral concentration methods from irrigation and processing water. De Keuckelaere A; Baert L; Duarte A; Stals A; Uyttendaele M J Virol Methods; 2013 Feb; 187(2):294-303. PubMed ID: 23201288 [TBL] [Abstract][Full Text] [Related]
15. Assessment of microbiological contamination of fresh, minimally processed, and ready-to-eat lettuces (Lactuca sativa), Rio de Janeiro State, Brazil. Brandão ML; Almeida DO; Bispo FC; Bricio SM; Marin VA; Miagostovich MP J Food Sci; 2014 May; 79(5):M961-6. PubMed ID: 24761806 [TBL] [Abstract][Full Text] [Related]
16. The effect of pre-treatment and sonication of centrifugal ultrafiltration devices on virus recovery. Jones TH; Brassard J; Johns MW; Gagné MJ J Virol Methods; 2009 Nov; 161(2):199-204. PubMed ID: 19555721 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Removal of Norovirus Surrogates, Murine Norovirus and Tulane Virus, from Aqueous Systems by Zero-Valent Iron. Shearer AEH; Kniel KE J Food Prot; 2018 Sep; 81(9):1432-1438. PubMed ID: 30080120 [TBL] [Abstract][Full Text] [Related]
18. Reduction of Norovirus Surrogates Alone and in Association with Bacteria on Leaf Lettuce and Tomatoes During Application of Aqueous Ozone. Dawley CR; Lee JA; Gibson KE Food Environ Virol; 2021 Sep; 13(3):390-400. PubMed ID: 33880734 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of sodium hypochlorite and peroxyacetic acid to reduce murine norovirus 1, B40-8, Listeria monocytogenes, and Escherichia coli O157:H7 on shredded iceberg lettuce and in residual wash water. Baert L; Vandekinderen I; Devlieghere F; Van Coillie E; Debevere J; Uyttendaele M J Food Prot; 2009 May; 72(5):1047-54. PubMed ID: 19517733 [TBL] [Abstract][Full Text] [Related]
20. Postharvest Reduction of Coliphage MS2 from Romaine Lettuce during Simulated Commercial Processing with and without a Chlorine-Based Sanitizer. Wengert SL; Aw TG; Ryser ET; Rose JB J Food Prot; 2017 Feb; 80(2):220-224. PubMed ID: 28221984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]