These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 20004397)
1. Mechanical interaction between cells and fluid for bone tissue engineering scaffold: modulation of the interfacial shear stress. Blecha LD; Rakotomanana L; Razafimahery F; Terrier A; Pioletti DP J Biomech; 2010 Mar; 43(5):933-7. PubMed ID: 20004397 [TBL] [Abstract][Full Text] [Related]
2. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model. Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048 [TBL] [Abstract][Full Text] [Related]
3. Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. Checa S; Prendergast PJ J Biomech; 2010 Mar; 43(5):961-8. PubMed ID: 19954779 [TBL] [Abstract][Full Text] [Related]
4. A finite element prediction of strain on cells in a highly porous collagen-glycosaminoglycan scaffold. Stops AJ; McMahon LA; O'Mahoney D; Prendergast PJ; McHugh PE J Biomech Eng; 2008 Dec; 130(6):061001. PubMed ID: 19045530 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation. Chung CA; Chen CW; Chen CP; Tseng CS Biotechnol Bioeng; 2007 Aug; 97(6):1603-16. PubMed ID: 17304558 [TBL] [Abstract][Full Text] [Related]
6. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage. Babalola OM; Bonassar LJ J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968 [TBL] [Abstract][Full Text] [Related]
7. Cell distribution in a scaffold with random architectures under the influence of fluid dynamics. Shanglong Xu ; Pingan Du ; Youzhuan Xie ; Yang Yue J Biomater Appl; 2008 Nov; 23(3):229-45. PubMed ID: 18467746 [TBL] [Abstract][Full Text] [Related]
8. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Jung Y; Kim SH; Kim YH; Kim SH Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251 [TBL] [Abstract][Full Text] [Related]
9. [The physiological response of osteoblasts to pulsatile fluid flow shear stress in vitro]. Zhang B; Pan J; Wang Y; Xian C; Tang L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):845-8. PubMed ID: 18788293 [TBL] [Abstract][Full Text] [Related]
10. Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: macro-scale and micro-structured models. Cioffi M; Küffer J; Ströbel S; Dubini G; Martin I; Wendt D J Biomech; 2008 Oct; 41(14):2918-25. PubMed ID: 18789444 [TBL] [Abstract][Full Text] [Related]
11. A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. Stops AJ; Heraty KB; Browne M; O'Brien FJ; McHugh PE J Biomech; 2010 Mar; 43(4):618-26. PubMed ID: 19939388 [TBL] [Abstract][Full Text] [Related]
12. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Li D; Tang T; Lu J; Dai K Tissue Eng Part A; 2009 Oct; 15(10):2773-83. PubMed ID: 19226211 [TBL] [Abstract][Full Text] [Related]
13. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution. Lappa M Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686 [TBL] [Abstract][Full Text] [Related]
14. Study of osteoblastic cells in a microfluidic environment. Leclerc E; David B; Griscom L; Lepioufle B; Fujii T; Layrolle P; Legallaisa C Biomaterials; 2006 Feb; 27(4):586-95. PubMed ID: 16026825 [TBL] [Abstract][Full Text] [Related]
15. Engineered bone culture in a perfusion bioreactor: a 2D computational study of stationary mass and momentum transport. Pierre J; Oddou C Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):429-38. PubMed ID: 17852175 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
17. Mechanical stimulation mediates gene expression in MC3T3 osteoblastic cells differently in 2D and 3D environments. Barron MJ; Tsai CJ; Donahue SW J Biomech Eng; 2010 Apr; 132(4):041005. PubMed ID: 20387968 [TBL] [Abstract][Full Text] [Related]
18. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone. Galley SA; Michalek DJ; Donahue SW J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637 [TBL] [Abstract][Full Text] [Related]
19. Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Sandino C; Checa S; Prendergast PJ; Lacroix D Biomaterials; 2010 Mar; 31(8):2446-52. PubMed ID: 19969348 [TBL] [Abstract][Full Text] [Related]
20. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Baguneid M; Murray D; Salacinski HJ; Fuller B; Hamilton G; Walker M; Seifalian AM Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):151-7. PubMed ID: 15032735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]