These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 20004496)
1. The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Zentgraf U; Laun T; Miao Y Eur J Cell Biol; 2010; 89(2-3):133-7. PubMed ID: 20004496 [TBL] [Abstract][Full Text] [Related]
2. A novel upstream regulator of WRKY53 transcription during leaf senescence in Arabidopsis thaliana. Miao Y; Smykowski A; Zentgraf U Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():110-20. PubMed ID: 18721316 [TBL] [Abstract][Full Text] [Related]
3. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Miao Y; Laun T; Zimmermann P; Zentgraf U Plant Mol Biol; 2004 Aug; 55(6):853-67. PubMed ID: 15604721 [TBL] [Abstract][Full Text] [Related]
4. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Ay N; Irmler K; Fischer A; Uhlemann R; Reuter G; Humbeck K Plant J; 2009 Apr; 58(2):333-46. PubMed ID: 19143996 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional regulation of plant senescence: from functional genomics to systems biology. Breeze E; Harrison E; Page T; Warner N; Shen C; Zhang C; Buchanan-Wollaston V Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():99-109. PubMed ID: 18721315 [TBL] [Abstract][Full Text] [Related]
7. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Ellis CM; Nagpal P; Young JC; Hagen G; Guilfoyle TJ; Reed JW Development; 2005 Oct; 132(20):4563-74. PubMed ID: 16176952 [TBL] [Abstract][Full Text] [Related]
8. Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Miao Y; Laun TM; Smykowski A; Zentgraf U Plant Mol Biol; 2007 Sep; 65(1-2):63-76. PubMed ID: 17587183 [TBL] [Abstract][Full Text] [Related]
10. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Guo Y; Gan S Plant J; 2006 May; 46(4):601-12. PubMed ID: 16640597 [TBL] [Abstract][Full Text] [Related]
11. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Wagstaff C; Yang TJ; Stead AD; Buchanan-Wollaston V; Roberts JA Plant J; 2009 Feb; 57(4):690-705. PubMed ID: 18980641 [TBL] [Abstract][Full Text] [Related]
12. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. AbuQamar S; Chen X; Dhawan R; Bluhm B; Salmeron J; Lam S; Dietrich RA; Mengiste T Plant J; 2006 Oct; 48(1):28-44. PubMed ID: 16925600 [TBL] [Abstract][Full Text] [Related]
13. Molecular analysis of programmed cell death during senescence in Arabidopsis thaliana and Brassica oleracea: cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues. Coupe SA; Watson LM; Ryan DJ; Pinkney TT; Eason JR J Exp Bot; 2004 Jan; 55(394):59-68. PubMed ID: 14645391 [TBL] [Abstract][Full Text] [Related]
14. The molecular and genetic control of leaf senescence and longevity in Arabidopsis. Lim PO; Nam HG Curr Top Dev Biol; 2005; 67():49-83. PubMed ID: 15949531 [TBL] [Abstract][Full Text] [Related]
15. Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness. Fischer-Kilbienski I; Miao Y; Roitsch T; Zschiesche W; Humbeck K; Krupinska K Plant Mol Biol; 2010 Jul; 73(4-5):379-90. PubMed ID: 20238146 [TBL] [Abstract][Full Text] [Related]
16. Over-expression of Arabidopsis Bax inhibitor-1 delays methyl jasmonate-induced leaf senescence by suppressing the activation of MAP kinase 6. Yue H; Nie S; Xing D J Exp Bot; 2012 Jul; 63(12):4463-74. PubMed ID: 22563118 [TBL] [Abstract][Full Text] [Related]
17. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Miao Y; Zentgraf U Plant J; 2010 Jul; 63(2):179-188. PubMed ID: 20409006 [TBL] [Abstract][Full Text] [Related]
18. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. Li Z; Peng J; Wen X; Guo H J Integr Plant Biol; 2012 Aug; 54(8):526-39. PubMed ID: 22709441 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Lim PO; Kim Y; Breeze E; Koo JC; Woo HR; Ryu JS; Park DH; Beynon J; Tabrett A; Buchanan-Wollaston V; Nam HG Plant J; 2007 Dec; 52(6):1140-53. PubMed ID: 17971039 [TBL] [Abstract][Full Text] [Related]
20. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Baudry A; Caboche M; Lepiniec L Plant J; 2006 Jun; 46(5):768-79. PubMed ID: 16709193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]