These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 20004496)
41. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Xue-Xuan X; Hong-Bo S; Yuan-Yuan M; Gang X; Jun-Na S; Dong-Gang G; Cheng-Jiang R Crit Rev Biotechnol; 2010 Sep; 30(3):222-30. PubMed ID: 20572794 [TBL] [Abstract][Full Text] [Related]
42. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. Aoyama S; Huarancca Reyes T; Guglielminetti L; Lu Y; Morita Y; Sato T; Yamaguchi J Plant Cell Physiol; 2014 Feb; 55(2):293-305. PubMed ID: 24399238 [TBL] [Abstract][Full Text] [Related]
43. Catalase regulation during leaf senescence of Arabidopsis. Zentgraf U SEB Exp Biol Ser; 2009; 62():187-202. PubMed ID: 19418998 [No Abstract] [Full Text] [Related]
44. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Besseau S; Li J; Palva ET J Exp Bot; 2012 Apr; 63(7):2667-79. PubMed ID: 22268143 [TBL] [Abstract][Full Text] [Related]
45. HbWRKY82, a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis. Kang G; Yan D; Chen X; Yang L; Zeng R Physiol Plant; 2021 Jan; 171(1):151-160. PubMed ID: 33034379 [TBL] [Abstract][Full Text] [Related]
46. Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Guo Y; Gan SS Plant Cell Environ; 2012 Mar; 35(3):644-55. PubMed ID: 21988545 [TBL] [Abstract][Full Text] [Related]
47. Phosphorylation of WHIRLY1 by CIPK14 Shifts Its Localization and Dual Functions in Arabidopsis. Ren Y; Li Y; Jiang Y; Wu B; Miao Y Mol Plant; 2017 May; 10(5):749-763. PubMed ID: 28412544 [TBL] [Abstract][Full Text] [Related]
48. An arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Zhou C; Cai Z; Guo Y; Gan S Plant Physiol; 2009 May; 150(1):167-77. PubMed ID: 19251906 [TBL] [Abstract][Full Text] [Related]
49. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. Rauf M; Arif M; Dortay H; Matallana-Ramírez LP; Waters MT; Gil Nam H; Lim PO; Mueller-Roeber B; Balazadeh S EMBO Rep; 2013 Apr; 14(4):382-8. PubMed ID: 23459204 [TBL] [Abstract][Full Text] [Related]
50. A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Koyama T; Nii H; Mitsuda N; Ohta M; Kitajima S; Ohme-Takagi M; Sato F Plant Physiol; 2013 Jun; 162(2):991-1005. PubMed ID: 23629833 [TBL] [Abstract][Full Text] [Related]
51. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Chen X; Lu L; Mayer KS; Scalf M; Qian S; Lomax A; Smith LM; Zhong X Elife; 2016 Nov; 5():. PubMed ID: 27873573 [TBL] [Abstract][Full Text] [Related]
52. The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability. Xiao S; Chye ML Autophagy; 2010 Aug; 6(6):802-4. PubMed ID: 20574160 [TBL] [Abstract][Full Text] [Related]
53. Senescence and Defense Pathways Contribute to Heterosis. Gonzalez-Bayon R; Shen Y; Groszmann M; Zhu A; Wang A; Allu AD; Dennis ES; Peacock WJ; Greaves IK Plant Physiol; 2019 May; 180(1):240-252. PubMed ID: 30710054 [TBL] [Abstract][Full Text] [Related]
54. Identification of a transcription factor specifically expressed at the onset of leaf senescence. Hinderhofer K; Zentgraf U Planta; 2001 Jul; 213(3):469-73. PubMed ID: 11506370 [TBL] [Abstract][Full Text] [Related]
55. A Mutation in Plant-Specific SWI2/SNF2-Like Chromatin-Remodeling Proteins, DRD1 and DDM1, Delays Leaf Senescence in Arabidopsis thaliana. Cho EJ; Choi SH; Kim JH; Kim JE; Lee MH; Chung BY; Woo HR; Kim JH PLoS One; 2016; 11(1):e0146826. PubMed ID: 26752684 [TBL] [Abstract][Full Text] [Related]
56. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Robatzek S; Somssich IE Genes Dev; 2002 May; 16(9):1139-49. PubMed ID: 12000796 [TBL] [Abstract][Full Text] [Related]
57. Identification and function analyses of senescence-associated WRKYs in wheat. Zhang H; Zhao M; Song Q; Zhao L; Wang G; Zhou C Biochem Biophys Res Commun; 2016 Jun; 474(4):761-767. PubMed ID: 27166153 [TBL] [Abstract][Full Text] [Related]
58. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. Chen X; Zhang Z; Liu D; Zhang K; Li A; Mao L J Integr Plant Biol; 2010 Nov; 52(11):946-51. PubMed ID: 20977652 [TBL] [Abstract][Full Text] [Related]
59. A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. He L; Wu W; Zinta G; Yang L; Wang D; Liu R; Zhang H; Zheng Z; Huang H; Zhang Q; Zhu JK Nat Commun; 2018 Jan; 9(1):460. PubMed ID: 29386641 [TBL] [Abstract][Full Text] [Related]