These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20004642)

  • 1. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study.
    Lesoil C; Nonaka T; Sekiguchi H; Osada T; Miyata M; Afrin R; Ikai A
    Biochem Biophys Res Commun; 2010 Jan; 391(3):1312-7. PubMed ID: 20004642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a 521-kilodalton protein (Gli521) involved in force generation or force transmission for Mycoplasma mobile gliding.
    Seto S; Uenoyama A; Miyata M
    J Bacteriol; 2005 May; 187(10):3502-10. PubMed ID: 15866938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel protein domain for sialyloligosaccharide binding essential to Mycoplasma mobile gliding.
    Hamaguchi T; Kawakami M; Furukawa H; Miyata M
    FEMS Microbiol Lett; 2019 Feb; 366(3):. PubMed ID: 30668689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a 349-kilodalton protein (Gli349) responsible for cytadherence and glass binding during gliding of Mycoplasma mobile.
    Uenoyama A; Kusumoto A; Miyata M
    J Bacteriol; 2004 Mar; 186(5):1537-45. PubMed ID: 14973017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a 123-kilodalton protein (Gli123) involved in machinery for gliding motility of Mycoplasma mobile.
    Uenoyama A; Miyata M
    J Bacteriol; 2005 Aug; 187(16):5578-84. PubMed ID: 16077102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of isolated Gli349, a leg protein responsible for Mycoplasma mobile gliding via glass binding, revealed by rotary shadowing electron microscopy.
    Adan-Kubo J; Uenoyama A; Arata T; Miyata M
    J Bacteriol; 2006 Apr; 188(8):2821-8. PubMed ID: 16585743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence analysis of the gliding protein Gli349 in
    Metsugi S; Uenoyama A; Adan-Kubo J; Miyata M; Yura K; Kono H; Go N
    Biophysics (Nagoya-shi); 2005; 1():33-43. PubMed ID: 27857551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centipede and inchworm models to explain Mycoplasma gliding.
    Miyata M
    Trends Microbiol; 2008 Jan; 16(1):6-12. PubMed ID: 18083032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of the Mycoplasma genitalium MG312 protein reveals a specific requirement of the MG312 N-terminal domain for gliding motility.
    Burgos R; Pich OQ; Querol E; Piñol J
    J Bacteriol; 2007 Oct; 189(19):7014-23. PubMed ID: 17675381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a novel nucleoside triphosphatase from Mycoplasma mobile: a prime candidate motor for gliding motility.
    Ohtani N; Miyata M
    Biochem J; 2007 Apr; 403(1):71-7. PubMed ID: 17083328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Steps and Rotation in the Gliding Motility of Mycoplasma mobile.
    Kinosita Y; Sugawa M; Miyata M; Nishizaka T
    Methods Mol Biol; 2023; 2646():327-336. PubMed ID: 36842127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and localization of single molecular recognition events using atomic force microscopy.
    Hinterdorfer P; Dufrêne YF
    Nat Methods; 2006 May; 3(5):347-55. PubMed ID: 16628204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regions on Gli349 and Gli521 protein molecules directly involved in movements of Mycoplasma mobile gliding machinery, suggested by use of inhibitory antibodies and mutants.
    Uenoyama A; Seto S; Nakane D; Miyata M
    J Bacteriol; 2009 Mar; 191(6):1982-5. PubMed ID: 19124576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed Binding of Gliding Bacterium, Mycoplasma mobile, Shown by Detachment Force and Bond Lifetime.
    Tanaka A; Nakane D; Mizutani M; Nishizaka T; Miyata M
    mBio; 2016 Jun; 7(3):. PubMed ID: 27353751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction.
    Lee CK; Wang YM; Huang LS; Lin S
    Micron; 2007; 38(5):446-61. PubMed ID: 17015017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chained Structure of Dimeric F
    Toyonaga T; Kato T; Kawamoto A; Kodera N; Hamaguchi T; Tahara YO; Ando T; Namba K; Miyata M
    mBio; 2021 Aug; 12(4):e0141421. PubMed ID: 34281395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular recognition imaging and force spectroscopy of single biomolecules.
    Kienberger F; Ebner A; Gruber HJ; Hinterdorfer P
    Acc Chem Res; 2006 Jan; 39(1):29-36. PubMed ID: 16411737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unbinding of the streptavidin-biotin complex by atomic force microscopy: a hybrid simulation study.
    Zhou J; Zhang L; Leng Y; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2006 Sep; 125(10):104905. PubMed ID: 16999548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unitary step of gliding machinery in Mycoplasma mobile.
    Kinosita Y; Nakane D; Sugawa M; Masaike T; Mizutani K; Miyata M; Nishizaka T
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8601-6. PubMed ID: 24912194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Function of Gli123 Involved in Mycoplasma mobile Gliding.
    Matsuike D; Tahara YO; Nonaka T; Wu HN; Hamaguchi T; Kudo H; Hayashi Y; Arai M; Miyata M
    J Bacteriol; 2023 Mar; 205(3):e0034022. PubMed ID: 36749051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.