These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 20004748)
1. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Laschke MW; Strohe A; Menger MD; Alini M; Eglin D Acta Biomater; 2010 Jun; 6(6):2020-7. PubMed ID: 20004748 [TBL] [Abstract][Full Text] [Related]
2. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765 [TBL] [Abstract][Full Text] [Related]
3. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371 [TBL] [Abstract][Full Text] [Related]
4. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Laschke MW; Strohe A; Scheuer C; Eglin D; Verrier S; Alini M; Pohlemann T; Menger MD Acta Biomater; 2009 Jul; 5(6):1991-2001. PubMed ID: 19286433 [TBL] [Abstract][Full Text] [Related]
5. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
7. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234 [TBL] [Abstract][Full Text] [Related]
9. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. Qian J; Xu W; Yong X; Jin X; Zhang W Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891 [TBL] [Abstract][Full Text] [Related]
11. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
12. [A novel nano-hydroxyapatite/aliphatic polyesteramide composite]. Deng X; Chen Z; Qian Z; Liu C; Li H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):378-81, 392. PubMed ID: 18610626 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Kong L; Gao Y; Cao W; Gong Y; Zhao N; Zhang X J Biomed Mater Res A; 2005 Nov; 75(2):275-82. PubMed ID: 16044404 [TBL] [Abstract][Full Text] [Related]
14. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849 [TBL] [Abstract][Full Text] [Related]
15. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
16. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold. Fu S; Ni P; Wang B; Chu B; Peng J; Zheng L; Zhao X; Luo F; Wei Y; Qian Z Biomaterials; 2012 Nov; 33(33):8363-71. PubMed ID: 22921926 [TBL] [Abstract][Full Text] [Related]
17. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
18. An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Catledge SA; Clem WC; Shrikishen N; Chowdhury S; Stanishevsky AV; Koopman M; Vohra YK Biomed Mater; 2007 Jun; 2(2):142-50. PubMed ID: 18458448 [TBL] [Abstract][Full Text] [Related]
19. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
20. A composite material model for improved bone formation. Scaglione S; Lazzarini E; Ilengo C; Quarto R J Tissue Eng Regen Med; 2010 Oct; 4(7):505-13. PubMed ID: 20213628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]