These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 20004761)

  • 1. Meta-analysis of genome-wide association studies with overlapping subjects.
    Lin DY; Sullivan PF
    Am J Hum Genet; 2009 Dec; 85(6):862-72. PubMed ID: 20004761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FOLD: a method to optimize power in meta-analysis of genetic association studies with overlapping subjects.
    Kim EE; Lee S; Lee CH; Oh H; Song K; Han B
    Bioinformatics; 2017 Dec; 33(24):3947-3954. PubMed ID: 29036405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal methods for meta-analysis of genome-wide association studies.
    Zhou B; Shi J; Whittemore AS
    Genet Epidemiol; 2011 Nov; 35(7):581-91. PubMed ID: 21922536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data.
    Lin DY; Zeng D
    Genet Epidemiol; 2010 Jan; 34(1):60-6. PubMed ID: 19847795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the power of genome-wide association studies by using publicly available reference samples to expand the control group.
    Zhuang JJ; Zondervan K; Nyberg F; Harbron C; Jawaid A; Cardon LR; Barratt BJ; Morris AP
    Genet Epidemiol; 2010 May; 34(4):319-26. PubMed ID: 20088020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating rare variants under two-stage design.
    Li Q; Pan D; Yue W; Gao Y; Yu K
    J Hum Genet; 2012 Jun; 57(6):352-7. PubMed ID: 22572736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-assessment of multiple testing strategies for more efficient genome-wide association studies.
    Otani T; Noma H; Nishino J; Matsui S
    Eur J Hum Genet; 2018 Jul; 26(7):1038-1048. PubMed ID: 29523830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a Two-Stage Approach in Trans-Ethnic Meta-Analysis in Genome-Wide Association Studies.
    Hong J; Lunetta KL; Cupples LA; Dupuis J; Liu CT
    Genet Epidemiol; 2016 May; 40(4):284-92. PubMed ID: 27061095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subset-Based Analysis Using Gene-Environment Interactions for Discovery of Genetic Associations across Multiple Studies or Phenotypes.
    Yu Y; Xia L; Lee S; Zhou X; Stringham HM; Boehnke M; Mukherjee B
    Hum Hered; 2018; 83(6):283-314. PubMed ID: 31132756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of empirical Bayes hierarchical modeling for the analysis of genome-wide association study data.
    Heron EA; O'Dushlaine C; Segurado R; Gallagher L; Gill M
    Biostatistics; 2011 Jul; 12(3):445-61. PubMed ID: 21252078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. METAINTER: meta-analysis of multiple regression models in genome-wide association studies.
    Vaitsiakhovich T; Drichel D; Herold C; Lacour A; Becker T
    Bioinformatics; 2015 Jan; 31(2):151-7. PubMed ID: 25252781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants.
    Ma C; Blackwell T; Boehnke M; Scott LJ;
    Genet Epidemiol; 2013 Sep; 37(6):539-50. PubMed ID: 23788246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for meta-analysis of multiple traits using GWAS summary statistics.
    Ray D; Boehnke M
    Genet Epidemiol; 2018 Mar; 42(2):134-145. PubMed ID: 29226385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of disease-associated deletions in case-control studies using SNP genotypes with application to rheumatoid arthritis.
    Wu CC; Shete S; Chen WV; Peng B; Lee AT; Ma J; Gregersen PK; Amos CI
    Hum Genet; 2009 Aug; 126(2):303-15. PubMed ID: 19415332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the meta-analysis of genome-wide association studies: a robust and efficient approach to combine population and family-based studies.
    Won S; Lu Q; Bertram L; Tanzi RE; Lange C
    Hum Hered; 2012; 73(1):35-46. PubMed ID: 22261799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A generalized-weights solution to sample overlap in meta-analysis.
    Bom PRD; Rachinger H
    Res Synth Methods; 2020 Nov; 11(6):812-832. PubMed ID: 32790019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparse meta-analysis with high-dimensional data.
    He Q; Zhang HH; Avery CL; Lin DY
    Biostatistics; 2016 Apr; 17(2):205-20. PubMed ID: 26395907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic model selection in genome-wide association studies: robust methods and the use of meta-analysis.
    Bagos PG
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):285-308. PubMed ID: 23629457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LPG: A four-group probabilistic approach to leveraging pleiotropy in genome-wide association studies.
    Yang Y; Dai M; Huang J; Lin X; Yang C; Chen M; Liu J
    BMC Genomics; 2018 Jun; 19(1):503. PubMed ID: 29954342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the oxidative stress-related gene MSRA as a rheumatoid arthritis susceptibility locus by genome-wide pathway analysis.
    Martín JE; Alizadeh BZ; González-Gay MA; Balsa A; Pascual-Salcedo D; Fernández-Gutiérrez B; Raya E; Franke L; van't Slot R; Coenen MJ; van Riel P; Radstake TR; Koeleman BP; Martín J
    Arthritis Rheum; 2010 Nov; 62(11):3183-90. PubMed ID: 20617525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.