These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20004920)

  • 1. Planners to the rescue: spatial planning facilitating the development of offshore wind energy.
    Jay S
    Mar Pollut Bull; 2010 Apr; 60(4):493-9. PubMed ID: 20004920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New perspectives on sea use management: initial findings from European experience with marine spatial planning.
    Douvere F; Ehler CN
    J Environ Manage; 2009 Jan; 90(1):77-88. PubMed ID: 18786758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges and solutions of remote sensing at offshore wind energy developments.
    Kelly TA; West TE; Davenport JK
    Mar Pollut Bull; 2009 Nov; 58(11):1599-604. PubMed ID: 19828157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing vulnerability of marine bird populations to offshore wind farms.
    Furness RW; Wade HM; Masden EA
    J Environ Manage; 2013 Apr; 119():56-66. PubMed ID: 23454414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maritime Spatial Planning supported by systematic site selection: Applying Marxan for offshore wind power in the western Baltic Sea.
    Göke C; Dahl K; Mohn C
    PLoS One; 2018; 13(3):e0194362. PubMed ID: 29543878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Medical Emergency Preparedness in offshore wind farms : New challenges in the german north and baltic seas].
    Stuhr M; Dethleff D; Weinrich N; Nielsen M; Hory D; Kowald B; Seide K; Kerner T; Nau C; Jürgens C
    Anaesthesist; 2016 May; 65(5):369-79. PubMed ID: 27072312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk formulation for the sonic effects of offshore wind farms on fish in the EU region.
    Kikuchi R
    Mar Pollut Bull; 2010 Feb; 60(2):172-7. PubMed ID: 19857880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing vessel routes could significantly reduce the cost of future offshore wind projects.
    Samoteskul K; Firestone J; Corbett J; Callahan J
    J Environ Manage; 2014 Aug; 141():146-54. PubMed ID: 24794388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of offshore wind energy resources in Europe under present and future climate.
    deCastro M; Costoya X; Salvador S; Carvalho D; Gómez-Gesteira M; Sanz-Larruga FJ; Gimeno L
    Ann N Y Acad Sci; 2019 Jan; 1436(1):70-97. PubMed ID: 30008177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A GIS-based multi-criteria model for offshore wind energy power plants site selection in both sides of the Aegean Sea.
    Tercan E; Tapkın S; Latinopoulos D; Dereli MA; Tsiropoulos A; Ak MF
    Environ Monit Assess; 2020 Sep; 192(10):652. PubMed ID: 32964332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea.
    Lloret J; Turiel A; Solé J; Berdalet E; Sabatés A; Olivares A; Gili JM; Vila-Subirós J; Sardá R
    Sci Total Environ; 2022 Jun; 824():153803. PubMed ID: 35150689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine spatial planning: Coordinating divergent marine interests.
    Grip K; Blomqvist S
    Ambio; 2021 Jun; 50(6):1172-1183. PubMed ID: 33554312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning.
    Pınarbaşı K; Galparsoro I; Depellegrin D; Bald J; Pérez-Morán G; Borja Á
    Sci Total Environ; 2019 Jun; 667():306-317. PubMed ID: 30831368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of man-made structures on sedimentary oxygenation: extent, seasonality and implications for offshore renewables.
    Wilding TA
    Mar Environ Res; 2014 Jun; 97():39-47. PubMed ID: 24582510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the present and future offshore wind power potential: a case study in a target territory of the Baltic Sea near the Latvian coast.
    Lizuma L; Avotniece Z; Rupainis S; Teilans A
    ScientificWorldJournal; 2013; 2013():126428. PubMed ID: 23983619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental management framework for wind farm siting: methodology and case study.
    Tegou LI; Polatidis H; Haralambopoulos DA
    J Environ Manage; 2010 Nov; 91(11):2134-47. PubMed ID: 20541310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential impacts of floating wind turbine technology for marine species and habitats.
    Maxwell SM; Kershaw F; Locke CC; Conners MG; Dawson C; Aylesworth S; Loomis R; Johnson AF
    J Environ Manage; 2022 Apr; 307():114577. PubMed ID: 35091240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Satellite telemetry and digital aerial surveys show strong displacement of red-throated divers (Gavia stellata) from offshore wind farms.
    Heinänen S; Žydelis R; Kleinschmidt B; Dorsch M; Burger C; Morkūnas J; Quillfeldt P; Nehls G
    Mar Environ Res; 2020 Sep; 160():104989. PubMed ID: 32907727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation.
    Kark S; Brokovich E; Mazor T; Levin N
    Conserv Biol; 2015 Dec; 29(6):1573-85. PubMed ID: 26219342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping seabird sensitivity to offshore wind farms.
    Bradbury G; Trinder M; Furness B; Banks AN; Caldow RW; Hume D
    PLoS One; 2014; 9(9):e106366. PubMed ID: 25210739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.