These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Collin VC; Eymery F; Genty B; Rey P; Havaux M Plant Cell Environ; 2008 Feb; 31(2):244-57. PubMed ID: 17996014 [TBL] [Abstract][Full Text] [Related]
3. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Cuypers A; Smeets K; Ruytinx J; Opdenakker K; Keunen E; Remans T; Horemans N; Vanhoudt N; Van Sanden S; Van Belleghem F; Guisez Y; Colpaert J; Vangronsveld J J Plant Physiol; 2011 Mar; 168(4):309-16. PubMed ID: 20828869 [TBL] [Abstract][Full Text] [Related]
4. Defective copper transport in the copt5 mutant affects cadmium tolerance. Carrió-Seguí A; Garcia-Molina A; Sanz A; Peñarrubia L Plant Cell Physiol; 2015 Mar; 56(3):442-54. PubMed ID: 25432970 [TBL] [Abstract][Full Text] [Related]
5. Cd-induced Cu deficiency responses in Arabidopsis thaliana: are phytochelatins involved? Gielen H; Vangronsveld J; Cuypers A Plant Cell Environ; 2017 Mar; 40(3):390-400. PubMed ID: 27943310 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of silicon influence on the mitigation of cadmium-stress in the development of Arabidopsis thaliana through total metal content, proteomic and enzymatic approaches. Carneiro JMT; Chacón-Madrid K; Galazzi RM; Campos BK; Arruda SCC; Azevedo RA; Arruda MAZ J Trace Elem Med Biol; 2017 Dec; 44():50-58. PubMed ID: 28965600 [TBL] [Abstract][Full Text] [Related]
7. Priming with NO controls redox state and prevents cadmium-induced general up-regulation of methionine sulfoxide reductase gene family in Arabidopsis. Méndez AA; Pena LB; Benavides MP; Gallego SM Biochimie; 2016 Dec; 131():128-136. PubMed ID: 27702579 [TBL] [Abstract][Full Text] [Related]
8. Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. Molins H; Michelet L; Lanquar V; Agorio A; Giraudat J; Roach T; Krieger-Liszkay A; Thomine S Plant Cell Environ; 2013 Apr; 36(4):804-17. PubMed ID: 22998565 [TBL] [Abstract][Full Text] [Related]
9. Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Maksymiec W; Wójcik M; Krupa Z Chemosphere; 2007 Jan; 66(3):421-7. PubMed ID: 16860844 [TBL] [Abstract][Full Text] [Related]
10. Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress. Asensi-Fabado MA; Cela J; Müller M; Arrom L; Chang C; Munné-Bosch S J Plant Physiol; 2012 Mar; 169(4):360-8. PubMed ID: 22209220 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic analysis supports the role of CATION EXCHANGER 1 in cellular homeostasis and oxidative stress limitation during cadmium stress. Baliardini C; Corso M; Verbruggen N Plant Signal Behav; 2016 Jun; 11(6):e1183861. PubMed ID: 27172138 [TBL] [Abstract][Full Text] [Related]
12. Identifying the Pressure Points of Acute Cadmium Stress Prior to Acclimation in Deckers J; Hendrix S; Prinsen E; Vangronsveld J; Cuypers A Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872315 [TBL] [Abstract][Full Text] [Related]
13. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana. Schellingen K; Van Der Straeten D; Remans T; Vangronsveld J; Keunen E; Cuypers A Plant Sci; 2015 Oct; 239():137-46. PubMed ID: 26398798 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of temperature stress-responsive proteins in Arabidopsis thaliana rosette leaves. Rocco M; Arena S; Renzone G; Scippa GS; Lomaglio T; Verrillo F; Scaloni A; Marra M Mol Biosyst; 2013 Jun; 9(6):1257-67. PubMed ID: 23624559 [TBL] [Abstract][Full Text] [Related]
15. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Brunetti P; Zanella L; De Paolis A; Di Litta D; Cecchetti V; Falasca G; Barbieri M; Altamura MM; Costantino P; Cardarelli M J Exp Bot; 2015 Jul; 66(13):3815-29. PubMed ID: 25900618 [TBL] [Abstract][Full Text] [Related]
16. A mutant of the Arabidopsis thaliana LIPOXYGENASE1 gene shows altered signalling and oxidative stress related responses after cadmium exposure. Keunen E; Remans T; Opdenakker K; Jozefczak M; Gielen H; Guisez Y; Vangronsveld J; Cuypers A Plant Physiol Biochem; 2013 Feb; 63():272-80. PubMed ID: 23314084 [TBL] [Abstract][Full Text] [Related]
17. ALTERNATIVE OXIDASE1a modulates the oxidative challenge during moderate Cd exposure in Arabidopsis thaliana leaves. Keunen E; Schellingen K; Van Der Straeten D; Remans T; Colpaert J; Vangronsveld J; Cuypers A J Exp Bot; 2015 May; 66(10):2967-77. PubMed ID: 25743159 [TBL] [Abstract][Full Text] [Related]
18. Accession-specific life strategies affect responses in leaves of Arabidopsis thaliana plants exposed to excess Cu and Cd. Amaral Dos Reis R; Keunen E; Mourato MP; Martins LL; Vangronsveld J; Cuypers A J Plant Physiol; 2018 Apr; 223():37-46. PubMed ID: 29471274 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress. Sanjaya ; Hsiao PY; Su RC; Ko SS; Tong CG; Yang RY; Chan MT Plant Cell Environ; 2008 Aug; 31(8):1074-85. PubMed ID: 18419734 [TBL] [Abstract][Full Text] [Related]