These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20005117)

  • 61. Triazoloquinazolines as a novel class of phosphodiesterase 10A (PDE10A) inhibitors.
    Kehler J; Ritzen A; Langgård M; Petersen SL; Farah MM; Bundgaard C; Christoffersen CT; Nielsen J; Kilburn JP
    Bioorg Med Chem Lett; 2011 Jun; 21(12):3738-42. PubMed ID: 21602043
    [TBL] [Abstract][Full Text] [Related]  

  • 62. C-C bond formation at C-2 of a quinoline ring: synthesis of 2-(1H-indol-3-yl)quinoline-3-carbonitrile derivatives as a new class of PDE4 inhibitors.
    Kumar KS; Kiran Kumar S; Yogi Sreenivas B; Gorja DR; Kapavarapu R; Rambabu D; Rama Krishna G; Reddy CM; Basaveswara Rao MV; Parsa KV; Pal M
    Bioorg Med Chem; 2012 Apr; 20(7):2199-207. PubMed ID: 22386978
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload.
    Polidovitch N; Yang S; Sun H; Lakin R; Ahmad F; Gao X; Turnbull PC; Chiarello C; Perry CGR; Manganiello V; Yang P; Backx PH
    J Mol Cell Cardiol; 2019 Jul; 132():60-70. PubMed ID: 31051182
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Discovery of new inhibitor for PDE3 by virtual screening.
    Kim KY; Lee H; Yoo SE; Kim SH; Kang NS
    Bioorg Med Chem Lett; 2011 Mar; 21(6):1617-20. PubMed ID: 21330134
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis, SAR study, and biological evaluation of novel quinoline derivatives as phosphodiesterase 10A inhibitors with reduced CYP3A4 inhibition.
    Hamaguchi W; Masuda N; Miyamoto S; Shiina Y; Kikuchi S; Mihara T; Moriguchi H; Fushiki H; Murakami Y; Amano Y; Honbou K; Hattori K
    Bioorg Med Chem; 2015 Jan; 23(2):297-313. PubMed ID: 25515954
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design and synthesis of new prostaglandin D₂ receptor antagonists.
    Iwahashi M; Takahashi E; Tanaka M; Matsunaga Y; Okada Y; Matsumoto R; Nambu F; Nakai H; Toda M
    Bioorg Med Chem; 2011 Sep; 19(18):5361-71. PubMed ID: 21885288
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Novel cilostamide analogs, phosphodiesterase 3 inhibitors, produce positive inotropic but differential lusitropic and chronotropic effects on isolated rat atria.
    Hosseini A; Shafiee-Nick R; Sadeghian H; Parsaee H
    Iran J Basic Med Sci; 2017 Jun; 20(6):639-647. PubMed ID: 28868120
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis and structure-activity relationship of furoquinolinediones as inhibitors of Tyrosyl-DNA phosphodiesterase 2 (TDP2).
    Yu LM; Hu Z; Chen Y; Ravji A; Lopez S; Plescia CB; Yu Q; Yang H; Abdelmalak M; Saha S; Agama K; Kiselev E; Marchand C; Pommier Y; An LK
    Eur J Med Chem; 2018 May; 151():777-796. PubMed ID: 29677635
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quinoline-4-methyl esters as human nonpancreatic secretory phospholipase A₂ inhibitors.
    Wu Y; Chen Z; Liu Y; Yu L; Zhou L; Yang S; Lai L
    Bioorg Med Chem; 2011 Jun; 19(11):3361-6. PubMed ID: 21555224
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Novel Polyfunctional Pyridines as Anticancer and Antioxidant Agents. Synthesis, Biological Evaluation and in Silico ADME-T Study.
    Badr MH; Rostom SAF; Radwan MF
    Chem Pharm Bull (Tokyo); 2017; 65(5):442-454. PubMed ID: 28458366
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthesis, biological evaluation, and molecular modeling of new 3-(cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) Oxime (GEBR-7b) related phosphodiesterase 4D (PDE4D) inhibitors.
    Brullo C; Massa M; Rocca M; Rotolo C; Guariento S; Rivera D; Ricciarelli R; Fedele E; Fossa P; Bruno O
    J Med Chem; 2014 Aug; 57(16):7061-72. PubMed ID: 25126889
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis, biological assessment and molecular modeling of new dihydroquinoline-3-carboxamides and dihydroquinoline-3-carbohydrazide derivatives as cholinesterase inhibitors, and Ca channel antagonists.
    Tomassoli I; Ismaili L; Pudlo M; de Los Ríos C; Soriano E; Colmena I; Gandía L; Rivas L; Samadi A; Marco-Contelles J; Refouvelet B
    Eur J Med Chem; 2011 Jan; 46(1):1-10. PubMed ID: 21111515
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Use of structure-based design to discover a potent, selective, in vivo active phosphodiesterase 10A inhibitor lead series for the treatment of schizophrenia.
    Helal CJ; Kang Z; Hou X; Pandit J; Chappie TA; Humphrey JM; Marr ES; Fennell KF; Chenard LK; Fox C; Schmidt CJ; Williams RD; Chapin DS; Siuciak J; Lebel L; Menniti F; Cianfrogna J; Fonseca KR; Nelson FR; O'Connor R; MacDougall M; McDowell L; Liras S
    J Med Chem; 2011 Jul; 54(13):4536-47. PubMed ID: 21650160
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Novel 1-alkynyl substituted 1,2-dihydroquinoline derivatives from nimesulide (and their 2-oxo analogues): a new strategy to identify inhibitors of PDE4B.
    Pal S; Durgadas S; Nallapati SB; Mukkanti K; Kapavarapu R; Meda CL; Parsa KV; Pal M
    Bioorg Med Chem Lett; 2011 Nov; 21(21):6573-6. PubMed ID: 21920740
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Tetrahydroquinoline derivatives as potent and selective factor XIa inhibitors.
    Quan ML; Wong PC; Wang C; Woerner F; Smallheer JM; Barbera FA; Bozarth JM; Brown RL; Harpel MR; Luettgen JM; Morin PE; Peterson T; Ramamurthy V; Rendina AR; Rossi KA; Watson CA; Wei A; Zhang G; Seiffert D; Wexler RR
    J Med Chem; 2014 Feb; 57(3):955-69. PubMed ID: 24405333
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis of novel inhibitors of β-glucuronidase based on benzothiazole skeleton and study of their binding affinity by molecular docking.
    Khan KM; Rahim F; Halim SA; Taha M; Khan M; Perveen S; Zaheer-Ul-Haq ; Mesaik MA; Iqbal Choudhary M
    Bioorg Med Chem; 2011 Jul; 19(14):4286-94. PubMed ID: 21684753
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 3-Acetyl-5-acylpyridin-2(1H)-ones and 3-acetyl-7,8-dihydro-2,5(1H,6H)-quinolinediones: synthesis, cardiotonic activity and computational studies.
    Lo Presti E; Boggia R; Feltrin A; Menozzi G; Dorigo P; Mosti L
    Farmaco; 1999 Jul; 54(7):465-74. PubMed ID: 10486914
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Design, synthesis, and biological evaluation of novel urolithins derivatives as potential phosphodiesterase II inhibitors.
    Tang L; Jiang J; Song G; Wang Y; Zhuang Z; Tan Y; Xia Y; Huang X; Feng X
    Sci Rep; 2021 Dec; 11(1):23792. PubMed ID: 34893678
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Modulation of cAMP-specific PDE without emetogenic activity: new sulfide-like PDE7 inhibitors.
    García AM; Brea J; Morales-García JA; Perez DI; González A; Alonso-Gil S; Gracia-Rubio I; Ros-Simó C; Conde S; Cadavid MI; Loza MI; Perez-Castillo A; Valverde O; Martinez A; Gil C
    J Med Chem; 2014 Oct; 57(20):8590-607. PubMed ID: 25264825
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fragment-based ligand design of novel potent inhibitors of tankyrases.
    Larsson EA; Jansson A; Ng FM; Then SW; Panicker R; Liu B; Sangthongpitag K; Pendharkar V; Tai SJ; Hill J; Dan C; Ho SY; Cheong WW; Poulsen A; Blanchard S; Lin GR; Alam J; Keller TH; Nordlund P
    J Med Chem; 2013 Jun; 56(11):4497-508. PubMed ID: 23672613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.