BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20005310)

  • 1. Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices.
    Puckett SD; Lee PP; Ciombor DM; Aaron RK; Webster TJ
    Acta Biomater; 2010 Jun; 6(6):2352-62. PubMed ID: 20005310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between the nanostructure of titanium surfaces and bacterial attachment.
    Puckett SD; Taylor E; Raimondo T; Webster TJ
    Biomaterials; 2010 Feb; 31(4):706-13. PubMed ID: 19879645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured titanium promotes keratinocyte density.
    Zile MA; Puckett S; Webster TJ
    J Biomed Mater Res A; 2011 Apr; 97(1):59-65. PubMed ID: 21319293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features.
    Lu J; Rao MP; MacDonald NC; Khang D; Webster TJ
    Acta Biomater; 2008 Jan; 4(1):192-201. PubMed ID: 17851147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of titanium alloy surfaces for percutaneous implants by covalently attaching laminin.
    Gordon DJ; Bhagawati DD; Pendegrass CJ; Middleton CA; Blunn GW
    J Biomed Mater Res A; 2010 Aug; 94(2):586-93. PubMed ID: 20198691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of TiO(2) nano-network on titanium surface increases the human cell growth.
    Chiang CY; Chiou SH; Yang WE; Hsu ML; Yung MC; Tsai ML; Chen LK; Huang HH
    Dent Mater; 2009 Aug; 25(8):1022-9. PubMed ID: 19329175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sealing the skin barrier around transcutaneous implants: in vitro study of keratinocyte proliferation and adhesion in response to surface modifications of titanium alloy.
    Pendegrass CJ; Gordon D; Middleton CA; Sun SN; Blunn GW
    J Bone Joint Surg Br; 2008 Jan; 90(1):114-21. PubMed ID: 18160512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features.
    Rajyalakshmi A; Ercan B; Balasubramanian K; Webster TJ
    Int J Nanomedicine; 2011; 6():1765-71. PubMed ID: 21980239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.
    Webster TJ; Ejiofor JU
    Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment.
    Rodriguez R; Kim K; Ong JL
    J Biomed Mater Res A; 2003 Jun; 65(3):352-8. PubMed ID: 12746882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating antimicrobials and implant materials for infection prevention around transcutaneous osseointegrated implants in a rabbit model.
    Chou TG; Petti CA; Szakacs J; Bloebaum RD
    J Biomed Mater Res A; 2010 Mar; 92(3):942-52. PubMed ID: 19291687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased osteoblast adhesion on nanograined Ti modified with KRSR.
    Balasundaram G; Webster TJ
    J Biomed Mater Res A; 2007 Mar; 80(3):602-11. PubMed ID: 17031820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic implant coatings.
    Eisenbarth E; Velten D; Breme J
    Biomol Eng; 2007 Feb; 24(1):27-32. PubMed ID: 16828342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocoupling of fibronectin to titanium surfaces influences keratinocyte adhesion, pellicle formation and thrombogenicity.
    Scheideler L; Rupp F; Wendel HP; Sathe S; Geis-Gerstorfer J
    Dent Mater; 2007 Apr; 23(4):469-78. PubMed ID: 16624401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays.
    Smith BS; Yoriya S; Johnson T; Popat KC
    Acta Biomater; 2011 Jun; 7(6):2686-96. PubMed ID: 21414425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood responses to titanium surface with TiO2 nano-mesh structure.
    Huang HH; Chen JY; Lin MC; Wang YT; Lee TL; Chen LK
    Clin Oral Implants Res; 2012 Mar; 23(3):379-83. PubMed ID: 21457350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I
    Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium.
    Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T
    Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.