These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20005810)

  • 21. Natural variation of ebony gene controlling thoracic pigmentation in Drosophila melanogaster.
    Takahashi A; Takahashi K; Ueda R; Takano-Shimizu T
    Genetics; 2007 Oct; 177(2):1233-7. PubMed ID: 17660557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Divergent enhancer haplotype of ebony on inversion In(3R)Payne associated with pigmentation variation in a tropical population of Drosophila melanogaster.
    Takahashi A; Takano-Shimizu T
    Mol Ecol; 2011 Oct; 20(20):4277-87. PubMed ID: 21914015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The H3K79me3 methyl-transferase Grappa is involved in the establishment and thermal plasticity of abdominal pigmentation in Drosophila melanogaster females.
    Narbey R; Mouchel-Vielh E; Gibert JM
    Sci Rep; 2024 Apr; 14(1):9547. PubMed ID: 38664546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pigmentation and behavior: potential association through pleiotropic genes in Drosophila.
    Takahashi A
    Genes Genet Syst; 2013; 88(3):165-74. PubMed ID: 24025245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity of Allelic Divergence to Genomic Position: Lessons from the Drosophila tan Gene.
    John AV; Sramkoski LL; Walker EA; Cooley AM; Wittkopp PJ
    G3 (Bethesda); 2016 Sep; 6(9):2955-62. PubMed ID: 27449514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia.
    Telonis-Scott M; Hoffmann AA; Sgrò CM
    Mol Ecol; 2011 May; 20(10):2100-10. PubMed ID: 21466604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redundant and Cryptic Enhancer Activities of the
    Kalay G; Lachowiec J; Rosas U; Dome MR; Wittkopp P
    Genetics; 2019 May; 212(1):343-360. PubMed ID: 30842209
    [No Abstract]   [Full Text] [Related]  

  • 28. Structural and genetic studies of the proliferation disrupter genes of Drosophila simulans and D. melanogaster.
    Itoh M; Yu S; Watanabe TK; Yamamoto MT
    Genetica; 1999; 106(3):223-9. PubMed ID: 10897796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity.
    Rogers WA; Salomone JR; Tacy DJ; Camino EM; Davis KA; Rebeiz M; Williams TM
    PLoS Genet; 2013 Aug; 9(8):e1003740. PubMed ID: 24009528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes throughout a Genetic Network Mask the Contribution of Hox Gene Evolution.
    Liu Y; Ramos-Womack M; Han C; Reilly P; Brackett KL; Rogers W; Williams TM; Andolfatto P; Stern DL; Rebeiz M
    Curr Biol; 2019 Jul; 29(13):2157-2166.e6. PubMed ID: 31257142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster.
    Pool JE; Aquadro CF
    Mol Ecol; 2007 Jul; 16(14):2844-51. PubMed ID: 17614900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in locus wide repression underlie the evolution of Drosophila abdominal pigmentation.
    Méndez-González ID; Williams TM; Rebeiz M
    PLoS Genet; 2023 May; 19(5):e1010722. PubMed ID: 37134121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The pdm3 Locus Is a Hotspot for Recurrent Evolution of Female-Limited Color Dimorphism in Drosophila.
    Yassin A; Delaney EK; Reddiex AJ; Seher TD; Bastide H; Appleton NC; Lack JB; David JR; Chenoweth SF; Pool JE; Kopp A
    Curr Biol; 2016 Sep; 26(18):2412-2422. PubMed ID: 27546577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution.
    Jeong S; Rokas A; Carroll SB
    Cell; 2006 Jun; 125(7):1387-99. PubMed ID: 16814723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sexual isolation between two sibling species with overlapping ranges: Drosophila santomea and Drosophila yakuba.
    Coyne JA; Kim SY; Chang AS; Lachaise D; Elwyn S
    Evolution; 2002 Dec; 56(12):2424-34. PubMed ID: 12583583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea.
    Llopart A; Lachaise D; Coyne JA
    Genetics; 2005 Sep; 171(1):197-210. PubMed ID: 15965264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.
    Rodriguez-Fernandez IA; Dell'Angelica EC
    PLoS One; 2015; 10(11):e0143026. PubMed ID: 26565960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé.
    Lachaise D; Harry M; Solignac M; Lemeunier F; Bénassi V; Cariou ML
    Proc Biol Sci; 2000 Aug; 267(1452):1487-95. PubMed ID: 11007323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconciling Differences in Pool-GWAS Between Populations: A Case Study of Female Abdominal Pigmentation in Drosophila melanogaster.
    Endler L; Betancourt AJ; Nolte V; Schlötterer C
    Genetics; 2016 Feb; 202(2):843-55. PubMed ID: 26715669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternative tasks of Drosophila tan in neurotransmitter recycling versus cuticle sclerotization disclosed by kinetic properties.
    Aust S; Brüsselbach F; Pütz S; Hovemann BT
    J Biol Chem; 2010 Jul; 285(27):20740-7. PubMed ID: 20439462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.