BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 20005825)

  • 21. Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body.
    Honegger KS; Campbell RA; Turner GC
    J Neurosci; 2011 Aug; 31(33):11772-85. PubMed ID: 21849538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response.
    Martelli C; Carlson JR; Emonet T
    J Neurosci; 2013 Apr; 33(15):6285-97. PubMed ID: 23575828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative relationship between odor-induced spike activity and spontaneous oscillations in the primary olfactory system of the terrestrial slug Limax marginatus.
    Ito I; Watanabe S; Kimura T; Kirino Y; Ito E
    Zoolog Sci; 2003 Nov; 20(11):1327-35. PubMed ID: 14624030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peripheral odor coding in the rat and frog: quality and intensity specification.
    Duchamp-Viret P; Duchamp A; Chaput MA
    J Neurosci; 2000 Mar; 20(6):2383-90. PubMed ID: 10704512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circuit properties generating gamma oscillations in a network model of the olfactory bulb.
    Bathellier B; Lagier S; Faure P; Lledo PM
    J Neurophysiol; 2006 Apr; 95(4):2678-91. PubMed ID: 16381804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the response of a population of olfactory receptor neurons to an odorant.
    Sandström M; Lansner A; Hellgren-Kotaleski J; Rospars JP
    J Comput Neurosci; 2009 Dec; 27(3):337-55. PubMed ID: 19415478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multitasking in the olfactory system: context-dependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons.
    Christensen TA; Waldrop BR; Hildebrand JG
    J Neurosci; 1998 Aug; 18(15):5999-6008. PubMed ID: 9671685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish.
    Friedrich RW; Laurent G
    J Neurophysiol; 2004 Jun; 91(6):2658-69. PubMed ID: 14960561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Olfactory processing and behavior downstream from highly selective receptor neurons.
    Schlief ML; Wilson RI
    Nat Neurosci; 2007 May; 10(5):623-30. PubMed ID: 17417635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Olfactory system oscillations across phyla.
    Kay LM
    Curr Opin Neurobiol; 2015 Apr; 31():141-7. PubMed ID: 25460070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The molecular basis of odor coding in the Drosophila larva.
    Kreher SA; Kwon JY; Carlson JR
    Neuron; 2005 May; 46(3):445-56. PubMed ID: 15882644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic learning rules and sparse coding in a model sensory system.
    Finelli LA; Haney S; Bazhenov M; Stopfer M; Sejnowski TJ
    PLoS Comput Biol; 2008 Apr; 4(4):e1000062. PubMed ID: 18421373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Olfactory system structure and function in newly hatched and adult locusts.
    Sun K; Ray S; Gupta N; Aldworth Z; Stopfer M
    Sci Rep; 2024 Jan; 14(1):2608. PubMed ID: 38297144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mosaic activity patterns and their relation to perceptual similarity: open discussions on the molecular basis and circuitry of odor recognition.
    Locatelli FF; Rela L
    J Neurochem; 2014 Dec; 131(5):546-53. PubMed ID: 25123415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Normalized Neural Representations of Complex Odors.
    Zwicker D
    PLoS One; 2016; 11(11):e0166456. PubMed ID: 27835696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats.
    Carey RM; Verhagen JV; Wesson DW; Pírez N; Wachowiak M
    J Neurophysiol; 2009 Feb; 101(2):1073-88. PubMed ID: 19091924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions.
    Silbering AF; Galizia CG
    J Neurosci; 2007 Oct; 27(44):11966-77. PubMed ID: 17978037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous olfactory receptor neuron activity determines follower cell response properties.
    Joseph J; Dunn FA; Stopfer M
    J Neurosci; 2012 Feb; 32(8):2900-10. PubMed ID: 22357872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations.
    Bhandawat V; Olsen SR; Gouwens NW; Schlief ML; Wilson RI
    Nat Neurosci; 2007 Nov; 10(11):1474-82. PubMed ID: 17922008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Central and reflex neuronal responses elicited by odor in a terrestrial mollusk.
    Gervais R; Kleinfeld D; Delaney KR; Gelperin A
    J Neurophysiol; 1996 Aug; 76(2):1327-39. PubMed ID: 8871239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.