BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 20006339)

  • 1. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.
    Pedersen JA; Lichter S; Swartz MA
    J Biomech; 2010 Mar; 43(5):900-5. PubMed ID: 20006339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix.
    Pedersen JA; Boschetti F; Swartz MA
    J Biomech; 2007; 40(7):1484-92. PubMed ID: 16987520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation.
    Chung CA; Chen CW; Chen CP; Tseng CS
    Biotechnol Bioeng; 2007 Aug; 97(6):1603-16. PubMed ID: 17304558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model for fluid shear-sensitive 3D tissue construct development.
    Liu D; Chua CK; Leong KF
    Biomech Model Mechanobiol; 2013 Jan; 12(1):19-31. PubMed ID: 22314710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in properties of the glycocalyx affects the shear rate and stress distribution on endothelial cells.
    Wang W
    J Biomech Eng; 2007 Jun; 129(3):324-9. PubMed ID: 17536899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress.
    Thoumine O; Nerem RM; Girard PR
    Lab Invest; 1995 Oct; 73(4):565-76. PubMed ID: 7474929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-induced shear stresses increase the number of cell-cell contacts within extracellular matrix.
    Kong Q; Vazquez M
    J Biomed Mater Res A; 2009 Jun; 89(4):968-79. PubMed ID: 18470918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model for how retrograde actin flow regulates adhesion traction stresses.
    Li Y; Bhimalapuram P; Dinner AR
    J Phys Condens Matter; 2010 May; 22(19):194113. PubMed ID: 21386439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic shear stress in parallel-plate flow chambers.
    Bacabac RG; Smit TH; Cowin SC; Van Loon JJ; Nieuwstadt FT; Heethaar R; Klein-Nulend J
    J Biomech; 2005 Jan; 38(1):159-67. PubMed ID: 15519352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the dynamics of a spherical scaffold in rotating bioreactors.
    Ramirez LE; Lim EA; Coimbra CF; Kobayashi MH
    Biotechnol Bioeng; 2003 Nov; 84(3):382-9. PubMed ID: 12968292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells.
    Tarbell JM; Shi ZD
    Biomech Model Mechanobiol; 2013 Jan; 12(1):111-21. PubMed ID: 22411016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes.
    Anderson EJ; Knothe Tate ML
    J Biomech; 2008; 41(8):1736-46. PubMed ID: 18482728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling for prediction of the shear stress of three-dimensional isotropic and aligned fiber networks.
    Park S
    Comput Methods Programs Biomed; 2017 Sep; 148():91-98. PubMed ID: 28774442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of the mechanical response of focal adhesions to shear flow.
    Biton YY; Safran SA
    J Phys Condens Matter; 2010 May; 22(19):194111. PubMed ID: 21386437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of shear stress on articular chondrocyte metabolism.
    Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ
    Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium.
    Shen HS
    Biomech Model Mechanobiol; 2010 Jun; 9(3):345-57. PubMed ID: 19941152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanobiology in the third dimension.
    Pedersen JA; Swartz MA
    Ann Biomed Eng; 2005 Nov; 33(11):1469-90. PubMed ID: 16341917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading.
    Lavagnino M; Arnoczky SP; Kepich E; Caballero O; Haut RC
    Biomech Model Mechanobiol; 2008 Oct; 7(5):405-16. PubMed ID: 17901992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turbulence model choice for the calculation of drag forces when using the CFD method.
    Zaïdi H; Fohanno S; Taïar R; Polidori G
    J Biomech; 2010 Feb; 43(3):405-11. PubMed ID: 19889420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.