BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 20006719)

  • 1. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test.
    Yanagisawa H; Dan I; Tsuzuki D; Kato M; Okamoto M; Kyutoku Y; Soya H
    Neuroimage; 2010 May; 50(4):1702-10. PubMed ID: 20006719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute moderate exercise enhances compensatory brain activation in older adults.
    Hyodo K; Dan I; Suwabe K; Kyutoku Y; Yamada Y; Akahori M; Byun K; Kato M; Soya H
    Neurobiol Aging; 2012 Nov; 33(11):2621-32. PubMed ID: 22300952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prefrontal activation due to Stroop interference increases during development--an event-related fNIRS study.
    Schroeter ML; Zysset S; Wahl M; von Cramon DY
    Neuroimage; 2004 Dec; 23(4):1317-25. PubMed ID: 15589096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study.
    Byun K; Hyodo K; Suwabe K; Ochi G; Sakairi Y; Kato M; Dan I; Soya H
    Neuroimage; 2014 Sep; 98():336-45. PubMed ID: 24799137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals.
    Aydöre S; Mihçak MK; Ciftçi K; Akin A
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):761-8. PubMed ID: 19403360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hemodynamics of cognitive control: the level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task.
    León-Carrion J; Damas-López J; Martín-Rodríguez JF; Domínguez-Roldán JM; Murillo-Cabezas F; Barroso Y Martin JM; Domínguez-Morales MR
    Behav Brain Res; 2008 Nov; 193(2):248-56. PubMed ID: 18606191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Right prefrontal brain activation due to Stroop interference is altered in attention-deficit hyperactivity disorder - A functional near-infrared spectroscopy study.
    Jourdan Moser S; Cutini S; Weber P; Schroeter ML
    Psychiatry Res; 2009 Sep; 173(3):190-5. PubMed ID: 19664910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults.
    Kujach S; Byun K; Hyodo K; Suwabe K; Fukuie T; Laskowski R; Dan I; Soya H
    Neuroimage; 2018 Apr; 169():117-125. PubMed ID: 29203453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials.
    Ehlis AC; Herrmann MJ; Wagener A; Fallgatter AJ
    Biol Psychol; 2005 Jul; 69(3):315-31. PubMed ID: 15925033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shortening intertrial intervals in event-related cognitive studies with near-infrared spectroscopy.
    Schroeter ML; Zysset S; von Cramon DY
    Neuroimage; 2004 May; 22(1):341-6. PubMed ID: 15110024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute tryptophan depletion improves performance and modulates the BOLD response during a Stroop task in healthy females.
    Evers EA; van der Veen FM; Jolles J; Deutz NE; Schmitt JA
    Neuroimage; 2006 Aug; 32(1):248-55. PubMed ID: 16650775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The association between aerobic fitness and cognitive function in older men mediated by frontal lateralization.
    Hyodo K; Dan I; Kyutoku Y; Suwabe K; Byun K; Ochi G; Kato M; Soya H
    Neuroimage; 2016 Jan; 125():291-300. PubMed ID: 26439424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain regions underlying response inhibition and interference monitoring and suppression.
    Blasi G; Goldberg TE; Weickert T; Das S; Kohn P; Zoltick B; Bertolino A; Callicott JH; Weinberger DR; Mattay VS
    Eur J Neurosci; 2006 Mar; 23(6):1658-64. PubMed ID: 16553630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsolateral prefrontal lobe activation declines significantly with age--functional NIRS study.
    Kwee IL; Nakada T
    J Neurol; 2003 May; 250(5):525-9. PubMed ID: 12736729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prefrontal activity during flavor difference test: application of functional near-infrared spectroscopy to sensory evaluation studies.
    Okamoto M; Dan H; Singh AK; Hayakawa F; Jurcak V; Suzuki T; Kohyama K; Dan I
    Appetite; 2006 Sep; 47(2):220-32. PubMed ID: 16797780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships Between Gum Chewing and Stroop Test: A Pilot Study.
    Kawakami Y; Takeda T; Konno M; Suzuki Y; Kawano Y; Ozawa T; Kondo Y; Sakatani K
    Adv Exp Med Biol; 2017; 977():221-226. PubMed ID: 28685449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognitive interference is associated with neuronal marker N-acetyl aspartate in the anterior cingulate cortex: an in vivo (1)H-MRS study of the Stroop Color-Word task.
    Grachev ID; Kumar R; Ramachandran TS; Szeverenyi NM
    Mol Psychiatry; 2001 Sep; 6(5):496, 529-39. PubMed ID: 11526467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural basis for reduced executive performance with hypoxic exercise.
    Ochi G; Yamada Y; Hyodo K; Suwabe K; Fukuie T; Byun K; Dan I; Soya H
    Neuroimage; 2018 May; 171():75-83. PubMed ID: 29305162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.