These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20006948)

  • 41. Cholesterol-Dependent Bending Energy Is Important in Cholesterol Distribution of the Plasma Membrane.
    Allender DW; Sodt AJ; Schick M
    Biophys J; 2019 Jun; 116(12):2356-2366. PubMed ID: 31023537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetics and thermodynamics of flip-flop in binary phospholipid membranes measured by sum-frequency vibrational spectroscopy.
    Anglin TC; Conboy JC
    Biochemistry; 2009 Nov; 48(43):10220-34. PubMed ID: 19746969
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipid-protein interactions in rat renal subcellular membranes: a biophysical and biochemical study.
    D'Antuono C; Fernández-Tomé MC; Sterin-Speziale N; Bernik DL
    Arch Biochem Biophys; 2000 Oct; 382(1):39-47. PubMed ID: 11051095
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Different mechanisms of free fatty acid flip-flop and dissociation revealed by temperature and molecular species dependence of transport across lipid vesicles.
    Kampf JP; Cupp D; Kleinfeld AM
    J Biol Chem; 2006 Jul; 281(30):21566-21574. PubMed ID: 16737957
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of cholesterol on the intrinsic rate of lipid flip-flop as measured by sum-frequency vibrational spectroscopy.
    Liu J; Brown KL; Conboy JC
    Faraday Discuss; 2013; 161():45-61; discussion 113-50. PubMed ID: 23805737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels.
    Ma Y; Benda A; Kwiatek J; Owen DM; Gaus K
    Biophys J; 2018 Oct; 115(8):1498-1508. PubMed ID: 30269886
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Nernst potential as a driving force of the fast transmembrane diffusion (flip-flop) of the anionic natural phospholipid phosphatidylethanol].
    Viktorov AV
    Biofizika; 2004; 49(6):1084-90. PubMed ID: 15612550
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol.
    Leventis R; Silvius JR
    Biophys J; 2001 Oct; 81(4):2257-67. PubMed ID: 11566796
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cholesterol Flip-Flop in Heterogeneous Membranes.
    Gu RX; Baoukina S; Tieleman DP
    J Chem Theory Comput; 2019 Mar; 15(3):2064-2070. PubMed ID: 30633868
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement.
    Meshulam T; Simard JR; Wharton J; Hamilton JA; Pilch PF
    Biochemistry; 2006 Mar; 45(9):2882-93. PubMed ID: 16503643
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dissociation of long and very long chain fatty acids from phospholipid bilayers.
    Zhang F; Kamp F; Hamilton JA
    Biochemistry; 1996 Dec; 35(50):16055-60. PubMed ID: 8973175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane.
    Wüstner D; Modzel M; Lund FW; Lomholt MA
    Chem Phys Lipids; 2016 Sep; 199():106-135. PubMed ID: 27016337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrafast glycerophospholipid-selective transbilayer motion mediated by a protein in the endoplasmic reticulum membrane.
    Buton X; Morrot G; Fellmann P; Seigneuret M
    J Biol Chem; 1996 Mar; 271(12):6651-7. PubMed ID: 8636082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transport of fatty acids across membranes by the diffusion mechanism.
    Hamilton JA
    Prostaglandins Leukot Essent Fatty Acids; 1999; 60(5-6):291-7. PubMed ID: 10471111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relationship between water permeation and flip-flop motion in a bilayer membrane.
    Inokuchi T; Arai N
    Phys Chem Chem Phys; 2018 Nov; 20(44):28155-28161. PubMed ID: 30387788
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gramicidin Increases Lipid Flip-Flop in Symmetric and Asymmetric Lipid Vesicles.
    Doktorova M; Heberle FA; Marquardt D; Rusinova R; Sanford RL; Peyear TA; Katsaras J; Feigenson GW; Weinstein H; Andersen OS
    Biophys J; 2019 Mar; 116(5):860-873. PubMed ID: 30755300
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transbilayer movement of cholesterol in phospholipid vesicles under equilibrium and non-equilibrium conditions.
    Poznansky MJ; Lange Y
    Biochim Biophys Acta; 1978 Jan; 506(2):256-64. PubMed ID: 620032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation.
    Matsuzaki K; Murase O; Fujii N; Miyajima K
    Biochemistry; 1996 Sep; 35(35):11361-8. PubMed ID: 8784191
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes of intrinsic membrane potentials induced by flip-flop of long-chain fatty acids.
    Pohl EE; Peterson U; Sun J; Pohl P
    Biochemistry; 2000 Feb; 39(7):1834-9. PubMed ID: 10677234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preferential interactions of fluorescent probe Prodan with cholesterol.
    Bondar OP; Rowe ES
    Biophys J; 1999 Feb; 76(2):956-62. PubMed ID: 9916026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.