BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20007198)

  • 1. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging.
    Gierlinger N; Luss S; König C; Konnerth J; Eder M; Fratzl P
    J Exp Bot; 2010; 61(2):587-95. PubMed ID: 20007198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.
    Sun L; Singh S; Joo M; Vega-Sanchez M; Ronald P; Simmons BA; Adams P; Auer M
    Biotechnol Bioeng; 2016 Jan; 113(1):82-90. PubMed ID: 26137889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of microfibril angle in molecular deformation of cellulose fibrils in Pinus massoniana compression wood and opposite wood studied by in-situ WAXS.
    Guo F; Wang J; Liu W; Hu J; Chen Y; Zhang X; Yang R; Yu Y
    Carbohydr Polym; 2024 Jun; 334():122024. PubMed ID: 38553223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose microfibril angle in the cell wall of wood fibres.
    Barnett JR; Bonham VA
    Biol Rev Camb Philos Soc; 2004 May; 79(2):461-72. PubMed ID: 15191232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial microfibril arrangements in wood cell walls.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Planta; 2022 Sep; 256(4):75. PubMed ID: 36087126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moisture changes in the plant cell wall force cellulose crystallites to deform.
    Zabler S; Paris O; Burgert I; Fratzl P
    J Struct Biol; 2010 Aug; 171(2):133-41. PubMed ID: 20438848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.).
    Sarén MP; Serimaa R; Andersson S; Paakkari T; Saranpää P; Pesonen E
    J Struct Biol; 2001 Nov; 136(2):101-9. PubMed ID: 11886211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional plant cell wall design revealed by the Raman imaging approach.
    Richter S; Müssig J; Gierlinger N
    Planta; 2011 Apr; 233(4):763-72. PubMed ID: 21197544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.).
    Andersson S; Wang Y; Pönni R; Hänninen T; Mononen M; Ren H; Serimaa R; Saranpää P
    J Integr Plant Biol; 2015 Apr; 57(4):388-95. PubMed ID: 25740619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana).
    Agarwal UP
    Planta; 2006 Oct; 224(5):1141-53. PubMed ID: 16761135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy.
    Rafsanjani A; Stiefel M; Jefimovs K; Mokso R; Derome D; Carmeliet J
    J R Soc Interface; 2014 Jun; 11(95):20140126. PubMed ID: 24671938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pontamine fast scarlet 4B bifluorescence and measurements of cellulose microfibril angles.
    Thomas J; Idris NA; Collings DA
    J Microsc; 2017 Oct; 268(1):13-27. PubMed ID: 28654160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced cellulose orientation analysis in complex model plant tissues.
    Rüggeberg M; Saxe F; Metzger TH; Sundberg B; Fratzl P; Burgert I
    J Struct Biol; 2013 Sep; 183(3):419-428. PubMed ID: 23867392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant material features responsible for bamboo's excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels.
    Wang X; Keplinger T; Gierlinger N; Burgert I
    Ann Bot; 2014 Dec; 114(8):1627-35. PubMed ID: 25180290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Shape of Native Plant Cellulose Microfibrils.
    Kubicki JD; Yang H; Sawada D; O'Neill H; Oehme D; Cosgrove D
    Sci Rep; 2018 Sep; 8(1):13983. PubMed ID: 30228280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging.
    Hänninen T; Kontturi E; Vuorinen T
    Phytochemistry; 2011 Oct; 72(14-15):1889-95. PubMed ID: 21632083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale movements of cellulose microfibrils in primary cell walls.
    Zhang T; Vavylonis D; Durachko DM; Cosgrove DJ
    Nat Plants; 2017 Apr; 3():17056. PubMed ID: 28452988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of microfibril angle in secondary cell walls at subcellular resolution by means of polarized light microscopy.
    Abraham Y; Elbaum R
    New Phytol; 2013 Feb; 197(3):1012-1019. PubMed ID: 23240639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques.
    Zhang Z; Ma J; Ji Z; Xu F
    Microsc Microanal; 2012 Dec; 18(6):1459-66. PubMed ID: 23237521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.