These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 20007466)

  • 1. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons.
    Putzier I; Kullmann PH; Horn JP; Levitan ES
    J Neurosci; 2009 Dec; 29(49):15414-9. PubMed ID: 20007466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower Affinity of Isradipine for L-Type Ca
    Ortner NJ; Bock G; Dougalis A; Kharitonova M; Duda J; Hess S; Tuluc P; Pomberger T; Stefanova N; Pitterl F; Ciossek T; Oberacher H; Draheim HJ; Kloppenburg P; Liss B; Striessnig J
    J Neurosci; 2017 Jul; 37(28):6761-6777. PubMed ID: 28592699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons.
    Kim SH; Choi YM; Jang JY; Chung S; Kang YK; Park MK
    Pflugers Arch; 2007 Nov; 455(2):309-21. PubMed ID: 17492308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act.
    Tucker KR; Huertas MA; Horn JP; Canavier CC; Levitan ES
    J Neurosci; 2012 Oct; 32(42):14519-31. PubMed ID: 23077037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.
    Dragicevic E; Poetschke C; Duda J; Schlaudraff F; Lammel S; Schiemann J; Fauler M; Hetzel A; Watanabe M; Lujan R; Malenka RC; Striessnig J; Liss B
    Brain; 2014 Aug; 137(Pt 8):2287-302. PubMed ID: 24934288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels.
    Ji H; Hougaard C; Herrik KF; Strøbaek D; Christophersen P; Shepard PD
    Eur J Neurosci; 2009 May; 29(9):1883-95. PubMed ID: 19473240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons.
    Wolfart J; Roeper J
    J Neurosci; 2002 May; 22(9):3404-13. PubMed ID: 11978817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice.
    Poetschke C; Dragicevic E; Duda J; Benkert J; Dougalis A; DeZio R; Snutch TP; Striessnig J; Liss B
    Sci Rep; 2015 Sep; 5():13688. PubMed ID: 26381090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances.
    Cepeda C; Colwell CS; Itri JN; Chandler SH; Levine MS
    J Neurophysiol; 1998 Jan; 79(1):82-94. PubMed ID: 9425179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Somatic Ca2+ Channel Profile in Midbrain Dopaminergic Neurons.
    Philippart F; Destreel G; Merino-Sepúlveda P; Henny P; Engel D; Seutin V
    J Neurosci; 2016 Jul; 36(27):7234-45. PubMed ID: 27383597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta.
    Kang Y; Kitai ST
    Neurosci Res; 1993 Dec; 18(3):209-21. PubMed ID: 8127469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-threshold L-type calcium channels in rat dopamine neurons.
    Durante P; Cardenas CG; Whittaker JA; Kitai ST; Scroggs RS
    J Neurophysiol; 2004 Mar; 91(3):1450-4. PubMed ID: 14645383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A calcium-activated nonselective cation conductance underlies the plateau potential in rat substantia nigra GABAergic neurons.
    Lee CR; Tepper JM
    J Neurosci; 2007 Jun; 27(24):6531-41. PubMed ID: 17567814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons.
    Blythe SN; Wokosin D; Atherton JF; Bevan MD
    J Neurosci; 2009 Dec; 29(49):15531-41. PubMed ID: 20007477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade of SK-type Ca2+-activated K+ channels uncovers a Ca2+-dependent slow afterdepolarization in nigral dopamine neurons.
    Ping HX; Shepard PD
    J Neurophysiol; 1999 Mar; 81(3):977-84. PubMed ID: 10085326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances.
    Khaliq ZM; Bean BP
    J Neurosci; 2010 May; 30(21):7401-13. PubMed ID: 20505107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small-conductance Ca2+-dependent K+ current regulates dopamine neuron activity: a combined approach of dynamic current clamping and intracellular imaging of calcium signals.
    Tateno T
    Neuroreport; 2010 Jul; 21(10):667-74. PubMed ID: 20508546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous calcium buffering capacity of substantia nigral dopamine neurons.
    Foehring RC; Zhang XF; Lee JC; Callaway JC
    J Neurophysiol; 2009 Oct; 102(4):2326-33. PubMed ID: 19675297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons.
    Wolfart J; Neuhoff H; Franz O; Roeper J
    J Neurosci; 2001 May; 21(10):3443-56. PubMed ID: 11331374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine neuron responses depend exponentially on pacemaker interval.
    Putzier I; Kullmann PH; Horn JP; Levitan ES
    J Neurophysiol; 2009 Feb; 101(2):926-33. PubMed ID: 19073798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.