BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20007516)

  • 1. Antisickling property of fetal hemoglobin enhances nitric oxide bioavailability and ameliorates organ oxidative stress in transgenic-knockout sickle mice.
    Dasgupta T; Fabry ME; Kaul DK
    Am J Physiol Regul Integr Comp Physiol; 2010 Feb; 298(2):R394-402. PubMed ID: 20007516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice.
    Kaul DK; Liu XD; Chang HY; Nagel RL; Fabry ME
    J Clin Invest; 2004 Oct; 114(8):1136-45. PubMed ID: 15489961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisickling fetal hemoglobin reduces hypoxia-inducible factor-1α expression in normoxic sickle mice: microvascular implications.
    Kaul DK; Fabry ME; Suzuka SM; Zhang X
    Am J Physiol Heart Circ Physiol; 2013 Jan; 304(1):H42-50. PubMed ID: 23125209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effect of arginine on oxidative stress in transgenic sickle mouse models.
    Dasgupta T; Hebbel RP; Kaul DK
    Free Radic Biol Med; 2006 Dec; 41(12):1771-80. PubMed ID: 17157180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine therapy of transgenic-knockout sickle mice improves microvascular function by reducing non-nitric oxide vasodilators, hemolysis, and oxidative stress.
    Kaul DK; Zhang X; Dasgupta T; Fabry ME
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H39-47. PubMed ID: 18456737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A recombinant human hemoglobin with anti-sickling properties greater than fetal hemoglobin.
    Levasseur DN; Ryan TM; Reilly MP; McCune SL; Asakura T; Townes TM
    J Biol Chem; 2004 Jun; 279(26):27518-24. PubMed ID: 15084588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second generation knockout sickle mice: the effect of HbF.
    Fabry ME; Suzuka SM; Weinberg RS; Lawrence C; Factor SM; Gilman JG; Costantini F; Nagel RL
    Blood; 2001 Jan; 97(2):410-8. PubMed ID: 11154217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment of Nitric Oxide Pathway by Intravascular Hemolysis Plays a Major Role in Mice Esophageal Hypercontractility: Reversion by Soluble Guanylyl Cyclase Stimulator.
    Henrique Silva F; Yotsumoto Fertrin K; Costa Alexandre E; Beraldi Calmasini F; Fernanda Franco-Penteado C; Ferreira Costa F
    J Pharmacol Exp Ther; 2018 Nov; 367(2):194-202. PubMed ID: 30108160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyurea improves nitric oxide bioavailability in humanized sickle cell mice.
    Taylor CM; Kasztan M; Sedaka R; Molina PA; Dunaway LS; Pollock JS; Pollock DM
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R630-R640. PubMed ID: 33624556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease.
    Krishnamoorthy S; Pace B; Gupta D; Sturtevant S; Li B; Makala L; Brittain J; Moore N; Vieira BF; Thullen T; Stone I; Li H; Hobbs WE; Light DR
    JCI Insight; 2017 Oct; 2(20):. PubMed ID: 29046485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologic decline in fetal hemoglobin parameters in infants with sickle cell disease: implications for pharmacological intervention.
    Marcus SJ; Ware RE
    J Pediatr Hematol Oncol; 1999; 21(5):407-11. PubMed ID: 10524455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of action of hydroxyurea in the management of sickle cell anemia in adults.
    Charache S
    Semin Hematol; 1997 Jul; 34(3 Suppl 3):15-21. PubMed ID: 9317197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic modifiers of HbF and response to hydroxyurea in sickle cell disease.
    Green NS; Barral S
    Pediatr Blood Cancer; 2011 Feb; 56(2):177-81. PubMed ID: 20830771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Genetic and Clinical Significance of Fetal Hemoglobin Expression in Sickle Cell Disease.
    Adekile A
    Med Princ Pract; 2021; 30(3):201-211. PubMed ID: 32892201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sickle cell disease: role of reactive oxygen and nitrogen metabolites.
    Wood KC; Granger DN
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):926-32. PubMed ID: 17645642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of oxidative stress and anti-oxidants on the development, pathogenesis, and therapy of sickle cell disease: A comprehensive review.
    Pavitra E; Acharya RK; Gupta VK; Verma HK; Kang H; Lee JH; Sahu T; Bhaskar L; Raju GSR; Huh YS
    Biomed Pharmacother; 2024 Jul; 176():116849. PubMed ID: 38823275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugate prodrug AN-233 induces fetal hemoglobin expression in sickle erythroid progenitors and β-YAC transgenic mice.
    Oseghale AR; Zhu X; Li B; Peterson KR; Nudelman A; Rephaeli A; Xu H; Pace BS
    Blood Cells Mol Dis; 2019 Nov; 79():102345. PubMed ID: 31351219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice.
    Hebbel RP; Vercellotti GM; Pace BS; Solovey AN; Kollander R; Abanonu CF; Nguyen J; Vineyard JV; Belcher JD; Abdulla F; Osifuye S; Eaton JW; Kelm RJ; Slungaard A
    Blood; 2010 Mar; 115(12):2483-90. PubMed ID: 20053759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MetAP2 inhibition modifies hemoglobin S to delay polymerization and improves blood flow in sickle cell disease.
    Demers M; Sturtevant S; Guertin KR; Gupta D; Desai K; Vieira BF; Li W; Hicks A; Ismail A; Gonçalves BP; Di Caprio G; Schonbrun E; Hansen S; Musayev FN; Safo MK; Wood DK; Higgins JM; Light DR
    Blood Adv; 2021 Mar; 5(5):1388-1402. PubMed ID: 33661300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral carbon monoxide therapy in murine sickle cell disease: Beneficial effects on vaso-occlusion, inflammation and anemia.
    Belcher JD; Gomperts E; Nguyen J; Chen C; Abdulla F; Kiser ZM; Gallo D; Levy H; Otterbein LE; Vercellotti GM
    PLoS One; 2018; 13(10):e0205194. PubMed ID: 30308028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.