BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20008267)

  • 1. Protein kinases A and C regulate receptor-mediated increases in cAMP in rabbit erythrocytes.
    Adderley SP; Sridharan M; Bowles EA; Stephenson AH; Ellsworth ML; Sprague RS
    Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H587-93. PubMed ID: 20008267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iloprost- and isoproterenol-induced increases in cAMP are regulated by different phosphodiesterases in erythrocytes of both rabbits and humans.
    Adderley SP; Dufaux EA; Sridharan M; Bowles EA; Hanson MS; Stephenson AH; Ellsworth ML; Sprague RS
    Am J Physiol Heart Circ Physiol; 2009 May; 296(5):H1617-24. PubMed ID: 19252089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi.
    Baillie GS; Sood A; McPhee I; Gall I; Perry SJ; Lefkowitz RJ; Houslay MD
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):940-5. PubMed ID: 12552097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphodiesterase 3 is present in rabbit and human erythrocytes and its inhibition potentiates iloprost-induced increases in cAMP.
    Hanson MS; Stephenson AH; Bowles EA; Sridharan M; Adderley S; Sprague RS
    Am J Physiol Heart Circ Physiol; 2008 Aug; 295(2):H786-93. PubMed ID: 18586889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphodiesterases do not limit beta1-adrenoceptor-mediated sinoatrial tachycardia: evidence with PDE3 and PDE4 in rabbits and PDE1-5 in rats.
    Kaumann AJ; Galindo-Tovar A; Escudero E; Vargas ML
    Naunyn Schmiedebergs Arch Pharmacol; 2009 Nov; 380(5):421-30. PubMed ID: 19693491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation.
    Eckly-Michel A; Martin V; Lugnier C
    Br J Pharmacol; 1997 Sep; 122(1):158-64. PubMed ID: 9298542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cAMP by phosphodiesterases in erythrocytes.
    Adderley SP; Sprague RS; Stephenson AH; Hanson MS
    Pharmacol Rep; 2010; 62(3):475-82. PubMed ID: 20631411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes.
    Patrizio M; Vago V; Musumeci M; Fecchi K; Sposi NM; Mattei E; Catalano L; Stati T; Marano G
    J Mol Cell Cardiol; 2008 Dec; 45(6):761-9. PubMed ID: 18851973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PKA-dependent activation of PDE3A and PDE4 and inhibition of adenylyl cyclase V/VI in smooth muscle.
    Murthy KS; Zhou H; Makhlouf GM
    Am J Physiol Cell Physiol; 2002 Mar; 282(3):C508-17. PubMed ID: 11832336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of GRK and PDE4 activities in the regulation of beta2 adrenergic signaling.
    Xin W; Tran TM; Richter W; Clark RB; Rich TC
    J Gen Physiol; 2008 Apr; 131(4):349-64. PubMed ID: 18347080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of myristoylated alanine-rich C kinase substrate is involved in the cAMP-dependent amylase release in parotid acinar cells.
    Satoh K; Matsuki-Fukushima M; Qi B; Guo MY; Narita T; Fujita-Yoshigaki J; Sugiya H
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1382-90. PubMed ID: 19372103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cAMP-PKA signaling pathway regulates bone resorption mediated by processing of cathepsin K in cultured mouse osteoclasts.
    Park YG; Kim YH; Kang SK; Kim CH
    Int Immunopharmacol; 2006 Jun; 6(6):947-56. PubMed ID: 16644480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of thapsigargin-induced calcium mobilisation by cyclic AMP-elevating agents in human lymphocytes is insensitive to the action of the protein kinase A inhibitor H-89.
    de la Rosa LA; Vilariño N; Vieytes MR; Botana LM
    Cell Signal; 2001 Jun; 13(6):441-9. PubMed ID: 11384843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of ATP release from erythrocytes: a role for EPACs and PKC.
    Adderley SP; Sridharan M; Bowles EA; Stephenson AH; Sprague RS; Ellsworth ML
    Microcirculation; 2011 Feb; 18(2):128-35. PubMed ID: 21166931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of cytosolic phosphodiesterases in the erythrocyte: a possible role for PDE5.
    Adderley SP; Thuet KM; Sridharan M; Bowles EA; Stephenson AH; Ellsworth ML; Sprague RS
    Med Sci Monit; 2011 May; 17(5):CR241-7. PubMed ID: 21525805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-Adrenergic receptor stimulation increases surface NKCC2 expression in rat thick ascending limbs in a process inhibited by phosphodiesterase 4.
    Haque MZ; Caceres PS; Ortiz PA
    Am J Physiol Renal Physiol; 2012 Nov; 303(9):F1307-14. PubMed ID: 22933300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of inhibition by H89 of UCP1 gene expression and thermogenesis indicates protein kinase A mediation of beta(3)-adrenergic signalling rather than beta(3)-adrenoceptor antagonism by H89.
    Fredriksson JM; Thonberg H; Ohlson KB; Ohba K; Cannon B; Nedergaard J
    Biochim Biophys Acta; 2001 Apr; 1538(2-3):206-17. PubMed ID: 11336791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of protein kinase C in GH secretion induced by GH-releasing factor and GH-releasing peptides in cultured ovine somatotrophs.
    Wu D; Clarke IJ; Chen C
    J Endocrinol; 1997 Aug; 154(2):219-30. PubMed ID: 9291832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular mechanisms underlying prostaglandin-induced transient cAMP signals near the plasma membrane of HEK-293 cells.
    Rich TC; Xin W; Mehats C; Hassell KA; Piggott LA; Le X; Karpen JW; Conti M
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C319-31. PubMed ID: 16899551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal Spontaneous Firing of Rabbit Sinoatrial Node Cells Is Regulated by Dual Activation of PDEs (Phosphodiesterases) 3 and 4.
    Vinogradova TM; Sirenko S; Lukyanenko YO; Yang D; Tarasov KV; Lyashkov AE; Varghese NJ; Li Y; Chakir K; Ziman B; Lakatta EG
    Circ Arrhythm Electrophysiol; 2018 Jun; 11(6):e005896. PubMed ID: 29880528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.