These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20008409)

  • 1. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.
    Boulet J; Balasubramaniam R; Daffertshofer A; Longtin A
    Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):423-38. PubMed ID: 20008409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in center-of-pressure dynamics during upright standing related to decreased balance control in young adults: fractional Brownian motion analysis.
    Tanaka H; Uetake T; Kuriki S; Ikeda S
    J Hum Ergol (Tokyo); 2002 Dec; 31(1-2):1-11. PubMed ID: 12908330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of delayed visual feedback and cognitive task load to postural dynamics.
    Yeh TT; Boulet J; Cluff T; Balasubramaniam R
    Neurosci Lett; 2010 Sep; 481(3):173-7. PubMed ID: 20599471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postural effects of the scaled display of visual foot center of pressure feedback under different somatosensory conditions at the foot and the ankle.
    Vuillerme N; Bertrand R; Pinsault N
    Arch Phys Med Rehabil; 2008 Oct; 89(10):2034-6. PubMed ID: 18929035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of body lean and visual information on the equilibrium maintenance during stance.
    Duarte M; Zatsiorsky VM
    Exp Brain Res; 2002 Sep; 146(1):60-9. PubMed ID: 12192579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Correlation-Based Framework for Evaluating Postural Control Stochastic Dynamics.
    Hernandez ME; Snider J; Stevenson C; Cauwenberghs G; Poizner H
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):551-561. PubMed ID: 26011886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered postural control in persons with cognitive impairment during visual feedback tasks.
    Szczepańska-Gieracha J; Chamela-Bilińska D; Kuczyński M
    Gait Posture; 2012 Feb; 35(2):312-5. PubMed ID: 22047774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of cross time-frequency analysis to postural sway behavior: the effects of aging and visual systems.
    Shin YJ; Gobert D; Sung SH; Powers EJ; Park JB
    IEEE Trans Biomed Eng; 2005 May; 52(5):859-68. PubMed ID: 15887535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.
    Takeda K; Mani H; Hasegawa N; Sato Y; Tanaka S; Maejima H; Asaka T
    J Physiol Anthropol; 2017 Jul; 36(1):31. PubMed ID: 28724444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.
    Kilby MC; Molenaar PC; Slobounov SM; Newell KM
    Exp Brain Res; 2017 Jan; 235(1):109-120. PubMed ID: 27644409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual feedback of the centre of gravity to optimize standing balance.
    Lakhani B; Mansfield A
    Gait Posture; 2015 Feb; 41(2):499-503. PubMed ID: 25542399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct parameterization of postural stability during quiet upright stance: effects of age and altered sensory conditions.
    Kim S; Nussbaum MA; Madigan ML
    J Biomech; 2008; 41(2):406-11. PubMed ID: 17915226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploratory behavior during stance persists with visual feedback.
    Murnaghan CD; Horslen BC; Inglis JT; Carpenter MG
    Neuroscience; 2011 Nov; 195():54-9. PubMed ID: 21867743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of balance training with visual feedback during mechanically unperturbed standing on postural corrective responses.
    Sayenko DG; Masani K; Vette AH; Alekhina MI; Popovic MR; Nakazawa K
    Gait Posture; 2012 Feb; 35(2):339-44. PubMed ID: 22118729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural responses evoked by platform pertubations are dominated by continuous feedback.
    van der Kooij H; de Vlugt E
    J Neurophysiol; 2007 Aug; 98(2):730-43. PubMed ID: 17460106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorimotor integration during stance: processing time of active or passive addition or withdrawal of visual or haptic information.
    Sozzi S; Do MC; Monti A; Schieppati M
    Neuroscience; 2012 Jun; 212():59-76. PubMed ID: 22516013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic stability of a human standing on a balance board.
    Chagdes JR; Rietdyk S; Jeffrey MH; Howard NZ; Raman A
    J Biomech; 2013 Oct; 46(15):2593-602. PubMed ID: 24041491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensori-motor integration during stance: time adaptation of control mechanisms on adding or removing vision.
    Sozzi S; Monti A; De Nunzio AM; Do MC; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):172-89. PubMed ID: 20727610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual feedback induces opposite effects on elementary centre of gravity and centre of pressure minus centre of gravity motions in undisturbed upright stance.
    Rougier P
    Clin Biomech (Bristol, Avon); 2003 May; 18(4):341-9. PubMed ID: 12689784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface height effects on postural control: a hypothesis for a stiffness strategy for stance.
    Carpenter MG; Frank JS; Silcher CP
    J Vestib Res; 1999; 9(4):277-86. PubMed ID: 10472040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.