BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20008509)

  • 41. RNA targeting through binding of small molecules: Studies on t-RNA binding by the cytotoxic protoberberine alkaloid coralyne.
    Islam MM; Pandya P; Kumar S; Kumar GS
    Mol Biosyst; 2009 Mar; 5(3):244-54. PubMed ID: 19225615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Binding properties of two ruthenium(II) polypyridyl complexes [Ru(bpy)
    Tan Z; Zhu J; Ni W; Liu X; Li Y; Tan L
    J Biol Inorg Chem; 2019 Aug; 24(5):721-731. PubMed ID: 31312912
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biophysical characterization of the strong stabilization of the RNA triplex poly(U)•poly(A)*poly(U) by 9-O-(ω-amino) alkyl ether berberine analogs.
    Bhowmik D; Das S; Hossain M; Haq L; Suresh Kumar G
    PLoS One; 2012; 7(5):e37939. PubMed ID: 22666416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spectroscopic study of the interaction between poly-(9-vinyladenine) and single or multistrand RNA.
    Yashima E; Tajima T; Miyauchi N; Akashi M
    Biopolymers; 1992 Jul; 32(7):811-7. PubMed ID: 1382649
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spectroscopic studies on the binding interaction of novel 13-phenylalkyl analogs of the natural alkaloid berberine to nucleic acid triplexes.
    Bhowmik D; Buzzetti F; Fiorillo G; Lombardi P; Suresh Kumar G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():257-64. PubMed ID: 24184628
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relaxation kinetics of the interaction between RNA and metal-intercalators: the Poly(A).Poly(U)/platinum-proflavine system.
    Biver T; Secco F; Venturini M
    Arch Biochem Biophys; 2005 May; 437(2):215-23. PubMed ID: 15850561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binding of ethidium bromide to a DNA triple helix. Evidence for intercalation.
    Scaria PV; Shafer RH
    J Biol Chem; 1991 Mar; 266(9):5417-23. PubMed ID: 2005088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nuclear magnetic resonance studies reveal stabilization of parallel G-quadruplex DNA [d(T
    Padmapriya K; Barthwal R
    Bioorg Med Chem Lett; 2016 Oct; 26(20):4915-4918. PubMed ID: 27624081
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Third-strand stabilizing effects of the RNA poly(U)·poly(A)*poly(U) triplex by a ruthenium(II) polypyridine complex and its hexaarginine peptide conjugate.
    Wang F; Sun Y; Liu X; Li Y; Tan L
    Int J Biol Macromol; 2019 Aug; 135():1134-1141. PubMed ID: 31176864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of ancillary ligands on the interaction of ruthenium(II) complexes with the triplex RNA poly(U)·poly(A)*poly(U).
    Li J; Sun Y; Xie L; He X; Tan L
    J Inorg Biochem; 2015 Feb; 143():56-63. PubMed ID: 25528478
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex.
    Gondeau C; Maurizot JC; Durand M
    Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binding properties of a molecular "light switch" ruthenium(II) polypyridyl complex toward double- and triple-helical forms of RNA.
    Wang H; Liu X; Tan L
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124710. PubMed ID: 37146854
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of hydroxyl groups in the B-ring of flavonoids in stabilization of the Hoogsteen paired third strand of Poly(U).Poly(A)*Poly(U) triplex.
    Pradhan AB; Bhuiya S; Haque L; Das S
    Arch Biochem Biophys; 2018 Jan; 637():9-20. PubMed ID: 29162368
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mg2+-induced triplex formation of an equimolar mixture of poly(rA) and poly(rU).
    Kankia BI
    Nucleic Acids Res; 2003 Sep; 31(17):5101-7. PubMed ID: 12930961
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Copolymers of adenylic and 2-aminoadenylic acids. Effect of progressive changes in hydrogen bonding and stacking on interaction with poly(uridylic acid).
    Muraoka M; Miles HT; Howard FB
    Biochemistry; 1980 May; 19(11):2429-39. PubMed ID: 7387983
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring the comparative binding aspects of benzophenanthridine plant alkaloid chelerythrine with RNA triple and double helices: a spectroscopic and calorimetric approach.
    Haque L; Pradhan AB; Bhuiya S; Das S
    Phys Chem Chem Phys; 2015 Jul; 17(26):17202-13. PubMed ID: 26073991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA: a comparative spectroscopic and calorimetric study.
    Bhadra K; Kumar GS
    Biochim Biophys Acta; 2011 Apr; 1810(4):485-96. PubMed ID: 21281702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interactions of arene ruthenium(II) complexes [η
    Yuan F; Liu X; Li J; Tan L
    J Biol Inorg Chem; 2023 Sep; 28(6):559-570. PubMed ID: 37477757
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Colorimetric recognition of the coralyne-poly(dA) interaction using unmodified gold nanoparticle probes, and further detection of coralyne based upon this recognition system.
    Lv Z; Wei H; Li B; Wang E
    Analyst; 2009 Aug; 134(8):1647-51. PubMed ID: 20448933
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ionic microenvironmental effects on triplex DNA stabilization: cationic counterion effects on poly(dT)·poly(dA)·poly(dT).
    Beck A; Vijayanathan V; Thomas T; Thomas TJ
    Biochimie; 2013 Jun; 95(6):1310-8. PubMed ID: 23454377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.