These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 20009169)

  • 1. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications.
    Wang Y; Liu Q; Long S; Wang W; Wang Q; Zhang M; Zhang S; Li Y; Zuo Q; Yang J; Liu M
    Nanotechnology; 2010 Jan; 21(4):045202. PubMed ID: 20009169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer.
    Wang SY; Lee DY; Huang TY; Wu JW; Tseng TY
    Nanotechnology; 2010 Dec; 21(49):495201. PubMed ID: 21071817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer.
    Li Y; Long S; Lv H; Liu Q; Wang Y; Zhang S; Lian W; Wang M; Zhang K; Xie H; Liu S; Liu M
    Nanotechnology; 2011 Jun; 22(25):254028. PubMed ID: 21572216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.
    Kim TW; Choi H; Oh SH; Jo M; Wang G; Cho B; Kim DY; Hwang H; Lee T
    Nanotechnology; 2009 Jan; 20(2):025201. PubMed ID: 19417263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-based total-dose irradiation effects on Cu/HfO2:Cu/Pt ReRAM devices.
    Butcher B; He X; Huang M; Wang Y; Liu Q; Lv H; Liu M; Wang W
    Nanotechnology; 2010 Nov; 21(47):475206. PubMed ID: 21030760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices.
    Yao IC; Lee DY; Tseng TY; Lin P
    Nanotechnology; 2012 Apr; 23(14):145201. PubMed ID: 22433578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances.
    Hu W; Qin N; Wu G; Lin Y; Li S; Bao D
    J Am Chem Soc; 2012 Sep; 134(36):14658-61. PubMed ID: 22931305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistive switching and electrical control of ferromagnetism in a Ag/HfO₂/Nb:SrTiO₃/Ag resistive random access memory (RRAM) device at room temperature.
    Ren S; Zhu G; Xie J; Bu J; Qin H; Hu J
    J Phys Condens Matter; 2016 Feb; 28(5):056001. PubMed ID: 26761365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.
    Li M; Zhuge F; Zhu X; Yin K; Wang J; Liu Y; He C; Chen B; Li RW
    Nanotechnology; 2010 Oct; 21(42):425202. PubMed ID: 20858929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure.
    Li Y; Yuan P; Fu L; Li R; Gao X; Tao C
    Nanotechnology; 2015 Oct; 26(39):391001. PubMed ID: 26358828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistive switching induced by metallic filaments formation through poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate).
    Wang Z; Zeng F; Yang J; Chen C; Pan F
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):447-53. PubMed ID: 22201222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bipolar one diode-one resistor integration for high-density resistive memory applications.
    Li Y; Lv H; Liu Q; Long S; Wang M; Xie H; Zhang K; Huo Z; Liu M
    Nanoscale; 2013 Jun; 5(11):4785-9. PubMed ID: 23612603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2010 Oct; 21(42):425205. PubMed ID: 20864781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilevel resistive switching in planar graphene/SiO2 nanogap structures.
    He C; Shi Z; Zhang L; Yang W; Yang R; Shi D; Zhang G
    ACS Nano; 2012 May; 6(5):4214-21. PubMed ID: 22519726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly stable ITO/Zn
    Chen SX; Chang SP; Hsieh WK; Chang SJ; Lin CC
    RSC Adv; 2018 May; 8(32):17622-17628. PubMed ID: 35542070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments.
    Zhuge F; Peng S; He C; Zhu X; Chen X; Liu Y; Li RW
    Nanotechnology; 2011 Jul; 22(27):275204. PubMed ID: 21613680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The observation of resistive switching characteristics using transparent and biocompatible Cu
    Abbas Y; Dugasani SR; Raza MT; Jeon YR; Park SH; Choi C
    Nanotechnology; 2019 Aug; 30(33):335203. PubMed ID: 31026860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random telegraph noise and resistance switching analysis of oxide based resistive memory.
    Choi S; Yang Y; Lu W
    Nanoscale; 2014 Jan; 6(1):400-4. PubMed ID: 24202235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistive switching characteristics of HfO2-based memory devices on flexible plastics.
    Han Y; Cho K; Park S; Kim S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8191-5. PubMed ID: 25958498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrically modifiable synapse array of resistive switching memory.
    Choi H; Jung H; Lee J; Yoon J; Park J; Seong DJ; Lee W; Hasan M; Jung GY; Hwang H
    Nanotechnology; 2009 Aug; 20(34):345201. PubMed ID: 19652272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.