These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20009325)

  • 1. A microfluidic system to evaluate intestinal absorption.
    Imura Y; Asano Y; Sato K; Yoshimura E
    Anal Sci; 2009 Dec; 25(12):1403-7. PubMed ID: 20009325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity.
    Imura Y; Sato K; Yoshimura E
    Anal Chem; 2010 Dec; 82(24):9983-8. PubMed ID: 21090751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies.
    Tan HY; Trier S; Rahbek UL; Dufva M; Kutter JP; Andresen TL
    PLoS One; 2018; 13(5):e0197101. PubMed ID: 29746551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological implications of polydimethylsiloxane-based microfluidic cell culture.
    Regehr KJ; Domenech M; Koepsel JT; Carver KC; Ellison-Zelski SJ; Murphy WL; Schuler LA; Alarid ET; Beebe DJ
    Lab Chip; 2009 Aug; 9(15):2132-9. PubMed ID: 19606288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure.
    Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A
    Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug permeability assay using microhole-trapped cells in a microfluidic device.
    Yeon JH; Park JK
    Anal Chem; 2009 Mar; 81(5):1944-51. PubMed ID: 19203200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compartmentalized 3D Tissue Culture Arrays under Controlled Microfluidic Delivery.
    Gumuscu B; Albers HJ; van den Berg A; Eijkel JCT; van der Meer AD
    Sci Rep; 2017 Jun; 7(1):3381. PubMed ID: 28611357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
    Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P
    J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption.
    Kim SH; Lee JW; Choi I; Kim YC; Lee JB; Sung JH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7220-8. PubMed ID: 24245233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
    Prokop A; Prokop Z; Schaffer D; Kozlov E; Wikswo J; Cliffel D; Baudenbacher F
    Biomed Microdevices; 2004 Dec; 6(4):325-39. PubMed ID: 15548879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caco-2/TC7 cell line characterization for intestinal absorption: how reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human?
    Turco L; Catone T; Caloni F; Di Consiglio E; Testai E; Stammati A
    Toxicol In Vitro; 2011 Feb; 25(1):13-20. PubMed ID: 20732406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device.
    Gao D; Liu H; Lin JM; Wang Y; Jiang Y
    Lab Chip; 2013 Mar; 13(5):978-85. PubMed ID: 23340920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices.
    Westerhout J; van de Steeg E; Grossouw D; Zeijdner EE; Krul CA; Verwei M; Wortelboer HM
    Eur J Pharm Sci; 2014 Oct; 63():167-77. PubMed ID: 25046168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caco-2 cells as a model for intestinal absorption.
    Angelis ID; Turco L
    Curr Protoc Toxicol; 2011 Feb; Chapter 20():Unit20.6. PubMed ID: 21400683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and evaluation of an in vitro method for prediction of human drug absorption II. Demonstration of the method suitability.
    Corti G; Maestrelli F; Cirri M; Zerrouk N; Mura P
    Eur J Pharm Sci; 2006 Mar; 27(4):354-62. PubMed ID: 16364612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Comparison of Human Colonic Carcinoma Cell Lines and Primary Small Intestinal Epithelial Cells for Investigations of Intestinal Drug Permeability and First-Pass Metabolism.
    Yamaura Y; Chapron BD; Wang Z; Himmelfarb J; Thummel KE
    Drug Metab Dispos; 2016 Mar; 44(3):329-35. PubMed ID: 26700954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.