These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 2000955)
1. Three-dimensional anatomy and renal concentrating mechanism. II. Sensitivity results. Wexler AS; Kalaba RE; Marsh DJ Am J Physiol; 1991 Mar; 260(3 Pt 2):F384-94. PubMed ID: 2000955 [TBL] [Abstract][Full Text] [Related]
2. Outer medullary anatomy and the urine concentrating mechanism. Wang X; Thomas SR; Wexler AS Am J Physiol; 1998 Feb; 274(2):F413-24. PubMed ID: 9486237 [TBL] [Abstract][Full Text] [Related]
3. The effects of collecting duct active NaCl reabsorption and inner medulla anatomy on renal concentrating mechanism. Wang X; Wexler AS Am J Physiol; 1996 May; 270(5 Pt 2):F900-11. PubMed ID: 8928853 [TBL] [Abstract][Full Text] [Related]
4. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. Layton AT Am J Physiol Renal Physiol; 2011 Feb; 300(2):F372-84. PubMed ID: 21068088 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional anatomy and renal concentrating mechanism. I. Modeling results. Wexler AS; Kalaba RE; Marsh DJ Am J Physiol; 1991 Mar; 260(3 Pt 2):F368-83. PubMed ID: 2000954 [TBL] [Abstract][Full Text] [Related]
6. Inner medullary external osmotic driving force in a 3-D model of the renal concentrating mechanism. Thomas SR; Wexler AS Am J Physiol; 1995 Aug; 269(2 Pt 2):F159-71. PubMed ID: 7653590 [TBL] [Abstract][Full Text] [Related]
7. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity. Layton AT; Layton HE Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1367-81. PubMed ID: 15914775 [TBL] [Abstract][Full Text] [Related]
8. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. Layton AT; Layton HE Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1346-66. PubMed ID: 15914776 [TBL] [Abstract][Full Text] [Related]
9. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Marcano M; Layton AT; Layton HE Bull Math Biol; 2010 Feb; 72(2):314-39. PubMed ID: 19915926 [TBL] [Abstract][Full Text] [Related]
10. Cycles and separations in a model of the renal medulla. Thomas SR Am J Physiol; 1998 Nov; 275(5):F671-90. PubMed ID: 9815126 [TBL] [Abstract][Full Text] [Related]
11. Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers. Layton AT; Pannabecker TL; Dantzler WH; Layton HE Am J Physiol Renal Physiol; 2010 Apr; 298(4):F962-72. PubMed ID: 20042460 [TBL] [Abstract][Full Text] [Related]
12. Passive, one-dimensional countercurrent models do not simulate hypertonic urine formation. Wexler AS; Kalaba RE; Marsh DJ Am J Physiol; 1987 Nov; 253(5 Pt 2):F1020-30. PubMed ID: 3688233 [TBL] [Abstract][Full Text] [Related]
13. Effect of vasa recta flow on concentrating ability of models of renal inner medulla. Stephenson JL; Wang H; Tewarson RP Am J Physiol; 1995 Apr; 268(4 Pt 2):F698-709. PubMed ID: 7733327 [TBL] [Abstract][Full Text] [Related]
14. Optimal transport parameters of the inner medullary collecting duct in interaction between urine concentrating and urea excreting mechanisms: a computer simulation study. Hamada Y; Taniguchi J; Imai M Nephron; 1996; 74(3):600-6. PubMed ID: 8938688 [TBL] [Abstract][Full Text] [Related]
15. Role of inner medullary collecting duct NaCl transport in urinary concentration. Chandhoke PS; Saidel GM; Knepper MA Am J Physiol; 1985 Nov; 249(5 Pt 2):F688-97. PubMed ID: 4061655 [TBL] [Abstract][Full Text] [Related]
16. Two modes for concentrating urine in rat inner medulla. Layton AT; Pannabecker TL; Dantzler WH; Layton HE Am J Physiol Renal Physiol; 2004 Oct; 287(4):F816-39. PubMed ID: 15213067 [TBL] [Abstract][Full Text] [Related]
17. Convective uphill transport of NaCl from ascending thin limb of loop of Henle. Stephenson JL; Jen JF; Wang H; Tewarson RP Am J Physiol; 1995 Apr; 268(4 Pt 2):F680-92. PubMed ID: 7733325 [TBL] [Abstract][Full Text] [Related]
18. The renal concentrating mechanism: micropuncture studies of the renal medulla. Jamison RL Fed Proc; 1983 May; 42(8):2392-7. PubMed ID: 6341087 [TBL] [Abstract][Full Text] [Related]
19. Structural organization of the renal medullary counterflow system. Kriz W Fed Proc; 1983 May; 42(8):2379-85. PubMed ID: 6840287 [TBL] [Abstract][Full Text] [Related]
20. Architecture of the human renal inner medulla and functional implications. Wei G; Rosen S; Dantzler WH; Pannabecker TL Am J Physiol Renal Physiol; 2015 Oct; 309(7):F627-37. PubMed ID: 26290371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]