BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 20010829)

  • 1. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection.
    Lim DK; Jeon KS; Kim HM; Nam JM; Suh YD
    Nat Mater; 2010 Jan; 9(1):60-7. PubMed ID: 20010829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap.
    Lim DK; Jeon KS; Hwang JH; Kim H; Kwon S; Suh YD; Nam JM
    Nat Nanotechnol; 2011 May; 6(7):452-60. PubMed ID: 21623360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates.
    Yuan W; Ho HP; Lee RK; Kong SK
    Appl Opt; 2009 Aug; 48(22):4329-37. PubMed ID: 19649035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays.
    Kim JM; Kim J; Choi K; Nam JM
    Adv Mater; 2023 Apr; 35(15):e2208250. PubMed ID: 36680474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity.
    Prinz J; Heck C; Ellerik L; Merk V; Bald I
    Nanoscale; 2016 Mar; 8(10):5612-20. PubMed ID: 26892770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.
    Thacker VV; Herrmann LO; Sigle DO; Zhang T; Liedl T; Baumberg JJ; Keyser UF
    Nat Commun; 2014 Mar; 5():3448. PubMed ID: 24622339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable and reproducible construction of a SERS substrate and its sensing applications.
    Wen Y; Wang W; Zhang Z; Xu L; Du H; Zhang X; Song Y
    Nanoscale; 2013 Jan; 5(2):523-6. PubMed ID: 23223828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanosponges (AuNS): a versatile nanostructure for surface-enhanced Raman spectroscopic detection of small molecules and biomolecules.
    Wallace GQ; Zuin MS; Tabatabaei M; Gobbo P; Lagugné-Labarthet F; Workentin MS
    Analyst; 2015 Nov; 140(21):7278-82. PubMed ID: 26347904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles.
    Lee JH; Oh JW; Nam SH; Cha YS; Kim GH; Rhim WK; Kim NH; Kim J; Han SW; Suh YD; Nam JM
    Small; 2016 Sep; 12(34):4726-34. PubMed ID: 27028989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.
    Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D
    Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles.
    Zhao Y; Yang Y; Luo Y; Yang X; Li M; Song Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21780-6. PubMed ID: 26381109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells.
    Lee JH; Nam JM; Jeon KS; Lim DK; Kim H; Kwon S; Lee H; Suh YD
    ACS Nano; 2012 Nov; 6(11):9574-84. PubMed ID: 23036132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy.
    Kühler P; Roller EM; Schreiber R; Liedl T; Lohmüller T; Feldmann J
    Nano Lett; 2014 May; 14(5):2914-9. PubMed ID: 24754830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Biocompatible Plasmonically Encoded Raman Scattering Nanoparticles Aid Ultrabright and Accurate Bioimaging.
    Su Y; Wen S; Luo X; Xue F; Wu S; Yuan B; Lu X; Cai C; Jiang LP; Wu P; Zhu JJ
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):135-147. PubMed ID: 33356115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-patterned SERS substrate: application for protein analysis vs. temperature.
    Das G; Mecarini F; Gentile F; De Angelis F; Mohan Kumar H; Candeloro P; Liberale C; Cuda G; Di Fabrizio E
    Biosens Bioelectron; 2009 Feb; 24(6):1693-9. PubMed ID: 18976899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity.
    Chang H; Kang H; Yang JK; Jo A; Lee HY; Lee YS; Jeong DH
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11859-63. PubMed ID: 25078544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.