BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 20010829)

  • 21. Broadband SERS Enhancement by DNA Origami Assembled Bimetallic Nanoantennas with Label-Free Single Protein Sensing.
    Tanwar S; Kaur V; Kaur G; Sen T
    J Phys Chem Lett; 2021 Aug; 12(33):8141-8150. PubMed ID: 34410129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells.
    Wen H; Jiang P; Hu Y; Li G
    Mikrochim Acta; 2018 Jul; 185(7):353. PubMed ID: 29971629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
    Yokota Y; Ueno K; Misawa H
    Chem Commun (Camb); 2011 Mar; 47(12):3505-7. PubMed ID: 21318204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.
    Gunawidjaja R; Kharlampieva E; Choi I; Tsukruk VV
    Small; 2009 Nov; 5(21):2460-6. PubMed ID: 19642091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface-enhanced Raman spectroscopy using silver nanoparticles on a precoated microscope slide.
    Li YS; Cheng J; Chung KT
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):524-7. PubMed ID: 17631042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman Enhancement of Nanoparticle Dimers Self-Assembled Using DNA Origami Nanotriangles.
    Kogikoski S; Tapio K; von Zander RE; Saalfrank P; Bald I
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of homogeneous surface-enhanced Raman scattering substrates by single pulse UV-laser treatment of gold and silver films.
    Christou K; Knorr I; Ihlemann J; Wackerbarth H; Beushausen V
    Langmuir; 2010 Dec; 26(23):18564-9. PubMed ID: 21043441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering.
    Kang M; Kim JJ; Oh YJ; Park SG; Jeong KH
    Adv Mater; 2014 Jul; 26(26):4510-4. PubMed ID: 24668875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchic Interfacial Nanocube Assembly for Sensitive, Selective, and Quantitative DNA Detection with Surface-Enhanced Raman Scattering.
    Kim M; Ko SM; Lee C; Son J; Kim J; Kim JM; Nam JM
    Anal Chem; 2019 Aug; 91(16):10467-10476. PubMed ID: 31265240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid Structures for Surface-Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene.
    Prinz J; Matković A; Pešić J; Gajić R; Bald I
    Small; 2016 Oct; 12(39):5458-5467. PubMed ID: 27594092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles.
    Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D
    Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering.
    Li ZY; Xia Y
    Nano Lett; 2010 Jan; 10(1):243-9. PubMed ID: 19958019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic Force Microscope Guided SERS Spectra Observation for Au@Ag-4MBA@PVP Plasmonic Nanoparticles.
    Yang L; Xu L; Wu X; Fang H; Zhong S; Wang Z; Bu J; Yuan X
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31640276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic Core-Shell-Satellites with Abundant Electromagnetic Hotspots for Highly Sensitive and Reproducible SERS Detection.
    Pandey P; Kunwar S; Shin KH; Seo MK; Yoon J; Hong WK; Sohn JI
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection.
    Potara M; Baia M; Farcau C; Astilean S
    Nanotechnology; 2012 Feb; 23(5):055501. PubMed ID: 22236478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering.
    Zhang L; Gong X; Bao Y; Zhao Y; Xi M; Jiang C; Fong H
    Langmuir; 2012 Oct; 28(40):14433-40. PubMed ID: 22974488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.