BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 20010837)

  • 1. THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves.
    Sabogal A; Lyubimov AY; Corn JE; Berger JM; Rio DC
    Nat Struct Mol Biol; 2010 Jan; 17(1):117-23. PubMed ID: 20010837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase.
    Roussigne M; Kossida S; Lavigne AC; Clouaire T; Ecochard V; Glories A; Amalric F; Girard JP
    Trends Biochem Sci; 2003 Feb; 28(2):66-9. PubMed ID: 12575992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function analysis of the THAP zinc finger of THAP1, a large C2CH DNA-binding module linked to Rb/E2F pathways.
    Bessière D; Lacroix C; Campagne S; Ecochard V; Guillet V; Mourey L; Lopez F; Czaplicki J; Demange P; Milon A; Girard JP; Gervais V
    J Biol Chem; 2008 Feb; 283(7):4352-63. PubMed ID: 18073205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The THAP domain of THAP1 is a large C2CH module with zinc-dependent sequence-specific DNA-binding activity.
    Clouaire T; Roussigne M; Ecochard V; Mathe C; Amalric F; Girard JP
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6907-12. PubMed ID: 15863623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to transposon DNA.
    Watkins S; van Pouderoyen G; Sixma TK
    Nucleic Acids Res; 2004; 32(14):4306-12. PubMed ID: 15304566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants of specific DNA-recognition by the THAP zinc finger.
    Campagne S; Saurel O; Gervais V; Milon A
    Nucleic Acids Res; 2010 Jun; 38(10):3466-76. PubMed ID: 20144952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human THAP9 gene encodes an active P-element DNA transposase.
    Majumdar S; Singh A; Rio DC
    Science; 2013 Jan; 339(6118):446-8. PubMed ID: 23349291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats.
    Marzo M; Liu D; Ruiz A; Chalmers R
    Gene; 2013 Aug; 525(1):84-91. PubMed ID: 23648487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A green fluorescent protein solubility screen in E. coli reveals domain boundaries of the GTP-binding domain in the P element transposase.
    Sabogal A; Rio DC
    Protein Sci; 2010 Nov; 19(11):2210-8. PubMed ID: 20842711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase.
    Morellet N; Li X; Wieninger SA; Taylor JL; Bischerour J; Moriau S; Lescop E; Bardiaux B; Mathy N; Assrir N; Bétermier M; Nilges M; Hickman AB; Dyda F; Craig NL; Guittet E
    Nucleic Acids Res; 2018 Mar; 46(5):2660-2677. PubMed ID: 29385532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pogo transposase contains a putative helix-turn-helix DNA binding domain that recognises a 12 bp sequence within the terminal inverted repeats.
    Wang H; Hartswood E; Finnegan DJ
    Nucleic Acids Res; 1999 Jan; 27(2):455-61. PubMed ID: 9862965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition.
    Butler MG; Chakraborty SA; Lampe DJ
    Genetica; 2006 May; 127(1-3):351-66. PubMed ID: 16850239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interchange of DNA-binding modes in the deformed and ultrabithorax homeodomains: a structural role for the N-terminal arm.
    Frazee RW; Taylor JA; Tullius TD
    J Mol Biol; 2002 Nov; 323(4):665-83. PubMed ID: 12419257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA.
    van Pouderoyen G; Ketting RF; Perrakis A; Plasterk RH; Sixma TK
    EMBO J; 1997 Oct; 16(19):6044-54. PubMed ID: 9312061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains.
    Brillet B; Bigot Y; Augé-Gouillou C
    Genetica; 2007 Jun; 130(2):105-20. PubMed ID: 16912840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR studies of a new family of DNA binding proteins: the THAP proteins.
    Gervais V; Campagne S; Durand J; Muller I; Milon A
    J Biomol NMR; 2013 May; 56(1):3-15. PubMed ID: 23306615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis for the Inverted Repeat Preferences of mariner Transposases.
    Trubitsyna M; Grey H; Houston DR; Finnegan DJ; Richardson JM
    J Biol Chem; 2015 May; 290(21):13531-40. PubMed ID: 25869132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains.
    Birkenbihl RP; Jach G; Saedler H; Huijser P
    J Mol Biol; 2005 Sep; 352(3):585-96. PubMed ID: 16095614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Mu repressor-DNA complex contains an immobilized 'wing' within the minor groove.
    Wojciak JM; Iwahara J; Clubb RT
    Nat Struct Biol; 2001 Jan; 8(1):84-90. PubMed ID: 11135677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region.
    Sanghavi HM; Mallajosyula SS; Majumdar S
    BMC Struct Biol; 2019 Mar; 19(1):4. PubMed ID: 30836974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.