BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20010876)

  • 1. Ezrin mediates c-Myc actions in prostate cancer cell invasion.
    Chuan YC; Iglesias-Gato D; Fernandez-Perez L; Cedazo-Minguez A; Pang ST; Norstedt G; Pousette A; Flores-Morales A
    Oncogene; 2010 Mar; 29(10):1531-42. PubMed ID: 20010876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycogen synthase kinase-3beta activity is required for androgen-stimulated gene expression in prostate cancer.
    Liao X; Thrasher JB; Holzbeierlein J; Stanley S; Li B
    Endocrinology; 2004 Jun; 145(6):2941-9. PubMed ID: 14988390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Silencing of ezrin gene inhibits proliferation and invasion of human prostate cancer PC-3 cells].
    Yang N; Wang L; Chen X; Liu J; Luo Z
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2016 Jun; 32(6):821-4. PubMed ID: 27371852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of ribosomal protein RPS2 in controlling let-7a expression in human prostate cancer.
    Wang M; Hu Y; Amatangelo MD; Stearns ME
    Mol Cancer Res; 2011 Jan; 9(1):36-50. PubMed ID: 21148031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Androgen induction of prostate cancer cell invasion is mediated by ezrin.
    Chuan YC; Pang ST; Cedazo-Minguez A; Norstedt G; Pousette A; Flores-Morales A
    J Biol Chem; 2006 Oct; 281(40):29938-48. PubMed ID: 16873375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysregulation of glycogen synthase kinase-3beta signaling in hepatocellular carcinoma cells.
    Desbois-Mouthon C; Blivet-Van Eggelpoël MJ; Beurel E; Boissan M; Delélo R; Cadoret A; Capeau J
    Hepatology; 2002 Dec; 36(6):1528-36. PubMed ID: 12447879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SATB1 Promotes Pancreatic Cancer Growth and Invasion Depending on MYC Activation.
    Chen Z; Li Z; Li W; Zong Y; Zhu Y; Miao Y; Xu Z
    Dig Dis Sci; 2015 Nov; 60(11):3304-17. PubMed ID: 26108419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription factor FoxM1 is the downstream target of c-Myc and contributes to the development of prostate cancer.
    Pan H; Zhu Y; Wei W; Shao S; Rui X
    World J Surg Oncol; 2018 Mar; 16(1):59. PubMed ID: 29554906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GLIPR1 suppresses prostate cancer development through targeted oncoprotein destruction.
    Li L; Ren C; Yang G; Fattah EA; Goltsov AA; Kim SM; Lee JS; Park S; Demayo FJ; Ittmann MM; Troncoso P; Thompson TC
    Cancer Res; 2011 Dec; 71(24):7694-704. PubMed ID: 22025562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Butein suppresses c-Myc-dependent transcription and Akt-dependent phosphorylation of hTERT in human leukemia cells.
    Moon DO; Kim MO; Lee JD; Choi YH; Kim GY
    Cancer Lett; 2009 Dec; 286(2):172-9. PubMed ID: 19560862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A long noncoding RNA connects c-Myc to tumor metabolism.
    Hung CL; Wang LY; Yu YL; Chen HW; Srivastava S; Petrovics G; Kung HJ
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18697-702. PubMed ID: 25512540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway.
    Quan Y; Wang N; Chen Q; Xu J; Cheng W; Di M; Xia W; Gao WQ
    Oncotarget; 2015 Sep; 6(28):26494-507. PubMed ID: 26317998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic hypoxia induces androgen-independent and invasive behavior in LNCaP human prostate cancer cells.
    Yamasaki M; Nomura T; Sato F; Mimata H
    Urol Oncol; 2013 Oct; 31(7):1124-31. PubMed ID: 22226664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycoprotein transmembrane nmb: an androgen-downregulated gene attenuates cell invasion and tumorigenesis in prostate carcinoma cells.
    Tsui KH; Chang YL; Feng TH; Chang PL; Juang HH
    Prostate; 2012 Sep; 72(13):1431-42. PubMed ID: 22290289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Vav3 oncogene enhances the malignant potential of prostate cancer cells under chronic hypoxia.
    Hirai K; Nomura T; Yamasaki M; Inoue T; Narimatsu T; Chisato Nakada PD; Yoshiyuki Tsukamoto PD; Matsuura K; Sato F; Moriyama M; Mimata H
    Urol Oncol; 2014 Feb; 32(2):101-9. PubMed ID: 23403204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inappropriate activation of androgen receptor by relaxin via beta-catenin pathway.
    Liu S; Vinall RL; Tepper C; Shi XB; Xue LR; Ma AH; Wang LY; Fitzgerald LD; Wu Z; Gandour-Edwards R; deVere White RW; Kung HJ
    Oncogene; 2008 Jan; 27(4):499-505. PubMed ID: 17653089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Podocalyxin increases the aggressive phenotype of breast and prostate cancer cells in vitro through its interaction with ezrin.
    Sizemore S; Cicek M; Sizemore N; Ng KP; Casey G
    Cancer Res; 2007 Jul; 67(13):6183-91. PubMed ID: 17616675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgens repress Bcl-2 expression via activation of the retinoblastoma (RB) protein in prostate cancer cells.
    Huang H; Zegarra-Moro OL; Benson D; Tindall DJ
    Oncogene; 2004 Mar; 23(12):2161-76. PubMed ID: 14676836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells.
    Itkonen HM; Minner S; Guldvik IJ; Sandmann MJ; Tsourlakis MC; Berge V; Svindland A; Schlomm T; Mills IG
    Cancer Res; 2013 Aug; 73(16):5277-87. PubMed ID: 23720054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells.
    Jagadeesh S; Kyo S; Banerjee PP
    Cancer Res; 2006 Feb; 66(4):2107-15. PubMed ID: 16489011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.