These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 20011141)

  • 21. libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience.
    Vella M; Cannon RC; Crook S; Davison AP; Ganapathy G; Robinson HP; Silver RA; Gleeson P
    Front Neuroinform; 2014; 8():38. PubMed ID: 24795618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NEVESIM: event-driven neural simulation framework with a Python interface.
    Pecevski D; Kappel D; Jonke Z
    Front Neuroinform; 2014; 8():70. PubMed ID: 25177291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.
    Sherfey JS; Soplata AE; Ardid S; Roberts EA; Stanley DA; Pittman-Polletta BR; Kopell NJ
    Front Neuroinform; 2018; 12():10. PubMed ID: 29599715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python.
    Hazan H; Saunders DJ; Khan H; Patel D; Sanghavi DT; Siegelmann HT; Kozma R
    Front Neuroinform; 2018; 12():89. PubMed ID: 30631269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience.
    Tennøe S; Halnes G; Einevoll GT
    Front Neuroinform; 2018; 12():49. PubMed ID: 30154710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Software for Brain Network Simulations: A Comparative Study.
    Tikidji-Hamburyan RA; Narayana V; Bozkus Z; El-Ghazawi TA
    Front Neuroinform; 2017; 11():46. PubMed ID: 28775687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NEST Desktop, an Educational Application for Neuroscience.
    Spreizer S; Senk J; Rotter S; Diesmann M; Weyers B
    eNeuro; 2021; 8(6):. PubMed ID: 34764188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brian2Loihi: An emulator for the neuromorphic chip Loihi using the spiking neural network simulator Brian.
    Michaelis C; Lehr AB; Oed W; Tetzlaff C
    Front Neuroinform; 2022; 16():1015624. PubMed ID: 36439945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Code Generation in Computational Neuroscience: A Review of Tools and Techniques.
    Blundell I; Brette R; Cleland TA; Close TG; Coca D; Davison AP; Diaz-Pier S; Fernandez Musoles C; Gleeson P; Goodman DFM; Hines M; Hopkins MW; Kumbhar P; Lester DR; Marin B; Morrison A; Müller E; Nowotny T; Peyser A; Plotnikov D; Richmond P; Rowley A; Rumpe B; Stimberg M; Stokes AB; Tomkins A; Trensch G; Woodman M; Eppler JM
    Front Neuroinform; 2018; 12():68. PubMed ID: 30455637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pycellerator: an arrow-based reaction-like modelling language for biological simulations.
    Shapiro BE; Mjolsness E
    Bioinformatics; 2016 Feb; 32(4):629-31. PubMed ID: 26504142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NEURON and Python.
    Hines ML; Davison AP; Muller E
    Front Neuroinform; 2009; 3():1. PubMed ID: 19198661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enabling Large-Scale Simulations With the GENESIS Neuronal Simulator.
    Crone JC; Vindiola MM; Yu AB; Boothe DL; Beeman D; Oie KS; Franaszczuk PJ
    Front Neuroinform; 2019; 13():69. PubMed ID: 31803040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal constrained objects for modelling neuronal dynamics.
    Nair M; Manchan Kannimoola J; Jayaraman B; Nair B; Diwakar S
    PeerJ Comput Sci; 2018; 4():e159. PubMed ID: 33816812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs.
    Golosio B; Tiddia G; De Luca C; Pastorelli E; Simula F; Paolucci PS
    Front Comput Neurosci; 2021; 15():627620. PubMed ID: 33679358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatically Selecting a Suitable Integration Scheme for Systems of Differential Equations in Neuron Models.
    Blundell I; Plotnikov D; Eppler JM; Morrison A
    Front Neuroinform; 2018; 12():50. PubMed ID: 30349471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2.
    Cannon RC; Gleeson P; Crook S; Ganapathy G; Marin B; Piasini E; Silver RA
    Front Neuroinform; 2014; 8():79. PubMed ID: 25309419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Python scripting in the nengo simulator.
    Stewart TC; Tripp B; Eliasmith C
    Front Neuroinform; 2009; 3():7. PubMed ID: 19352442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DANA: distributed numerical and adaptive modelling framework.
    Rougier NP; Fix J
    Network; 2012; 23(4):237-53. PubMed ID: 22994650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions.
    Jordan J; Helias M; Diesmann M; Kunkel S
    Front Neuroinform; 2020; 14():12. PubMed ID: 32431602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.