BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20012164)

  • 21. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L
    Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of Proliferation and Osteogenic Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Porous Scaffolds.
    Dao TT; Nguyen CT; Vu NB; Le HT; Nguyen PD; Van Pham P
    Adv Exp Med Biol; 2019; 1084():207-220. PubMed ID: 31214911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage.
    Filipowska J; Reilly GC; Osyczka AM
    Biotechnol Bioeng; 2016 Aug; 113(8):1814-24. PubMed ID: 26806539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ preparation and osteogenic properties of bionanocomposite scaffolds based on aliphatic polyurethane and bioactive glass nanoparticles.
    Covarrubias C; Agüero A; Maureira M; Morelli E; Escobar G; Cuadra F; Peñafiel C; Von Marttens A
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():642-653. PubMed ID: 30606576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.
    Yang W; Both SK; Zuo Y; Birgani ZT; Habibovic P; Li Y; Jansen JA; Yang F
    J Biomed Mater Res A; 2015 Jul; 103(7):2251-9. PubMed ID: 25370308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different Porosities of Chitosan Can Influence the Osteogenic Differentiation Potential of Stem Cells.
    Ardeshirylajimi A; Delgoshaie M; Mirzaei S; Khojasteh A
    J Cell Biochem; 2018 Jan; 119(1):625-633. PubMed ID: 28618050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker.
    Padash A; Halabian R; Salimi A; Kazemi NM; Shahrousvand M
    Hum Cell; 2021 Mar; 34(2):310-324. PubMed ID: 33090371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytocompatibility of polyurethane foams as biointegrable matrices for the preparation of scaffolds for bone reconstruction.
    Tanzi MC; Farè S; Petrini P; Tanini A; Piscitelli E; Zecchi Orlandini S; Brandi ML
    J Appl Biomater Biomech; 2003; 1(1):58-66. PubMed ID: 20803473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteogenic Potential of Periodontal Ligament Stem Cells Cultured in Osteogenic and Regular Growth Media: Confocal and Scanning Electron Microscope Study.
    Mukhtar AH; Alqutub MN
    J Contemp Dent Pract; 2020 Jul; 21(7):776-780. PubMed ID: 33020362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements.
    Thibault RA; Scott Baggett L; Mikos AG; Kasper FK
    Tissue Eng Part A; 2010 Feb; 16(2):431-40. PubMed ID: 19863274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Andrographolide promotes proliferative and osteogenic potentials of human placenta-derived mesenchymal stem cells through the activation of Wnt/β-catenin signaling.
    Phunikom N; Boonmuen N; Kheolamai P; Suksen K; Manochantr S; Tantrawatpan C; Tantikanlayaporn D
    Stem Cell Res Ther; 2021 Apr; 12(1):241. PubMed ID: 33853681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation.
    Donzelli E; Salvadè A; Mimo P; Viganò M; Morrone M; Papagna R; Carini F; Zaopo A; Miloso M; Baldoni M; Tredici G
    Arch Oral Biol; 2007 Jan; 52(1):64-73. PubMed ID: 17049335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique.
    Koroleva A; Deiwick A; Nguyen A; Schlie-Wolter S; Narayan R; Timashev P; Popov V; Bagratashvili V; Chichkov B
    PLoS One; 2015; 10(2):e0118164. PubMed ID: 25706270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells.
    Kiziltay A; Marcos-Fernandez A; San Roman J; Sousa RA; Reis RL; Hasirci V; Hasirci N
    J Tissue Eng Regen Med; 2015 Aug; 9(8):930-42. PubMed ID: 24376070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges.
    Clarke SA; Choi SY; McKechnie M; Burke G; Dunne N; Walker G; Cunningham E; Buchanan F
    J Mater Sci Mater Med; 2016 Feb; 27(2):22. PubMed ID: 26704539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling.
    Schantz JT; Brandwood A; Hutmacher DW; Khor HL; Bittner K
    J Mater Sci Mater Med; 2005 Sep; 16(9):807-19. PubMed ID: 16167109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of liquid crystal-based composite substrates on cell functional responses of human umbilical cord-derived mesenchymal stem cells by mechano-regulatory process.
    Wu H; Shang Y; Zhang J; Cheang LH; Zeng X; Tu M
    J Biomater Appl; 2017 Oct; 32(4):492-503. PubMed ID: 28992805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous three-dimensional scaffold.
    Lee JH; Rhie JW; Oh DY; Ahn ST
    Biochem Biophys Res Commun; 2008 Jun; 370(3):456-60. PubMed ID: 18395007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.