BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20012341)

  • 1. Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5.
    House AJ; Hyman MR
    Biodegradation; 2010 Jul; 21(4):525-41. PubMed ID: 20012341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.
    Lopes Ferreira N; Mathis H; Labbé D; Monot F; Greer CW; Fayolle-Guichard F
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):909-19. PubMed ID: 17347817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway, inhibition and regulation of methyl tertiary butyl ether oxidation in a filamentous fungus, Graphium sp.
    Skinner KM; Martinez-Prado A; Hyman MR; Williamson KJ; Ciuffetti LM
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1359-65. PubMed ID: 18043916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants.
    Wang X; Deshusses MA
    Biodegradation; 2007 Feb; 18(1):37-50. PubMed ID: 16733621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5.
    Smith CA; O'Reilly KT; Hyman MR
    Appl Environ Microbiol; 2003 Feb; 69(2):796-804. PubMed ID: 12570997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012.
    François A; Garnier L; Mathis H; Fayolle F; Monot F
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):256-62. PubMed ID: 12883872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE.
    Johnson EL; Smith CA; O'Reilly KT; Hyman MR
    Appl Environ Microbiol; 2004 Feb; 70(2):1023-30. PubMed ID: 14766585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface.
    Schmidt TC; Schirmer M; Weiss H; Haderlein SB
    J Contam Hydrol; 2004 Jun; 70(3-4):173-203. PubMed ID: 15134874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012.
    François A; Mathis H; Godefroy D; Piveteau P; Fayolle F; Monot F
    Appl Environ Microbiol; 2002 Jun; 68(6):2754-62. PubMed ID: 12039730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralization of methyl tert-butyl ether and other gasoline oxygenates by Pseudomonads using short n-alkanes as growth source.
    Morales M; Nava V; Velásquez E; Razo-Flores E; Revah S
    Biodegradation; 2009 Apr; 20(2):271-80. PubMed ID: 18814038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of benzene, toluene, ethylbenzene, and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) by pure culture UC1.
    Pruden A; Suidan M
    Biodegradation; 2004 Aug; 15(4):213-27. PubMed ID: 15473551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE.
    Lopes Ferreira N; Maciel H; Mathis H; Monot F; Fayolle-Guichard F; Greer CW
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):358-65. PubMed ID: 16028043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5 to C8 n-alkanes.
    Smith CA; O'Reilly KT; Hyman MR
    Appl Environ Microbiol; 2003 Dec; 69(12):7385-94. PubMed ID: 14660389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1.
    Smith CA; Hyman MR
    Appl Environ Microbiol; 2004 Aug; 70(8):4544-50. PubMed ID: 15294784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater remediation by an in situ biobarrier: a bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds.
    Saponaro S; Negri M; Sezenna E; Bonomo L; Sorlini C
    J Hazard Mater; 2009 Aug; 167(1-3):545-52. PubMed ID: 19200654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of methyl tert-butyl ether, its degradation products and other gasoline additives in soil samples by closed-system purge-and-trap gas chromatography-mass spectrometry.
    Rosell M; Lacorte S; Barceló D
    J Chromatogr A; 2006 Nov; 1132(1-2):28-38. PubMed ID: 16904119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of groundwater contaminated with gasoline components by an ozone/UV process.
    Garoma T; Gurol MD; Osibodu O; Thotakura L
    Chemosphere; 2008 Oct; 73(5):825-31. PubMed ID: 18691731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl tert-butyl ether and tert-butyl alcohol degradation by Fusarium solani.
    Magaña-Reyes M; Morales M; Revah S
    Biotechnol Lett; 2005 Nov; 27(22):1797-801. PubMed ID: 16314973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes.
    McKelvie JR; Mackay DM; de Sieyes NR; Lacrampe-Couloume G; Sherwood Lollar B
    J Contam Hydrol; 2007 Dec; 94(3-4):157-65. PubMed ID: 17610988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates.
    Fayolle F; Vandecasteele JP; Monot F
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):339-49. PubMed ID: 11549000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.