These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 2001241)
1. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism. Rustin P; Lance C Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241 [TBL] [Abstract][Full Text] [Related]
2. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+. Palmer JM; Schwitzguébel JP; Møller IM Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864 [TBL] [Abstract][Full Text] [Related]
3. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria. Neuburger M; Douce R Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982 [TBL] [Abstract][Full Text] [Related]
4. The oxidation of malate by isolated plant mitochondria. Coleman JO; Palmer JM Eur J Biochem; 1972 Apr; 26(4):499-509. PubMed ID: 4337262 [No Abstract] [Full Text] [Related]
5. Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants. Igamberdiev AU; Bykova NV; Gardeström P FEBS Lett; 1997 Jul; 412(2):265-9. PubMed ID: 9256232 [TBL] [Abstract][Full Text] [Related]
6. The control of malate dehydrogenase activity by adenine nucleotides in purified potato tuber (Solanum tuberosum L.) mitochondria. Rustin P; Valat M Arch Biochem Biophys; 1986 May; 247(1):62-7. PubMed ID: 3707142 [TBL] [Abstract][Full Text] [Related]
7. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I. Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332 [TBL] [Abstract][Full Text] [Related]
8. Acetoacetate and malate effects on succinate and energy production by O2-deprived liver mitochondria supplied with 2-oxoglutarate. Guidoux R Arch Biochem Biophys; 1991 Jun; 287(2):397-402. PubMed ID: 1898011 [TBL] [Abstract][Full Text] [Related]
9. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio. Korge P; Calmettes G; Weiss JN Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062 [TBL] [Abstract][Full Text] [Related]
10. Changes in the electron transport chain of pea leaf mitochondria metabolizing malate. Walker GH; Oliver DJ Arch Biochem Biophys; 1983 Sep; 225(2):847-53. PubMed ID: 6625611 [TBL] [Abstract][Full Text] [Related]
11. The effects of acetylcolletotrichin on the mitochondrial respiratory chain. Foucher B; Chappell JB; McGivan JD Biochem J; 1974 Mar; 138(3):415-23. PubMed ID: 4372992 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate. Nicklas WJ; Clark JB; Williamson JR Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory action of oxaloacetate on succinate oxidation in rat-liver mitochondria and the mechanism of its reversal. Wojtczak AB Biochim Biophys Acta; 1969 Jan; 172(1):52-65. PubMed ID: 4387597 [No Abstract] [Full Text] [Related]
14. Mechanism of inhibition by uncouples of succinate oxidation in isolated mitochondria. Papa S; Lofrumento NE; Paradies G; Quagliariello E Biochim Biophys Acta; 1969 May; 180(1):35-44. PubMed ID: 4182397 [No Abstract] [Full Text] [Related]
15. Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents: comparative operation of the cytochrome, alternative, and rotenone-resistant pathways. Peckmann K; von Willert DJ; Martin CE; Herppich WB J Exp Bot; 2012 May; 63(8):2909-19. PubMed ID: 22330897 [TBL] [Abstract][Full Text] [Related]
16. Direct demonstration of enol-oxaloacetate as an immediate product of malate oxidation by the mammalian succinate dehydrogenase. Panchenko MV; Vinogradov AD FEBS Lett; 1991 Jul; 286(1-2):76-8. PubMed ID: 1864383 [TBL] [Abstract][Full Text] [Related]
17. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria. Johansson FI; Michalecka AM; Møller IM; Rasmusson AG Biochem J; 2004 May; 380(Pt 1):193-202. PubMed ID: 14972026 [TBL] [Abstract][Full Text] [Related]
18. Malic enzyme activity and cyanide-insensitive electron transport in plant mitochondria. Rustin P; Moreau F Biochem Biophys Res Commun; 1979 Jun; 88(3):1125-31. PubMed ID: 223569 [No Abstract] [Full Text] [Related]
19. The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria. Wilson RH; Hanson JB Plant Physiol; 1969 Sep; 44(9):1335-41. PubMed ID: 5379109 [TBL] [Abstract][Full Text] [Related]
20. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves. Geisler DA; Johansson FI; Svensson AS; Rasmusson AG BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]