BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20012509)

  • 1. MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images.
    Yuan X; Trachtenberg JT; Potter SM; Roysam B
    Neuroinformatics; 2009 Dec; 7(4):213-32. PubMed ID: 20012509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.
    Singh PK; Hernandez-Herrera P; Labate D; Papadakis M
    Neuroinformatics; 2017 Oct; 15(4):303-319. PubMed ID: 28710672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Morphological Reconstruction of Neurons from Multiphoton and Confocal Microscopy Images Using 3D Tubular Models.
    SantamarĂ­a-Pang A; Hernandez-Herrera P; Papadakis M; Saggau P; Kakadiaris IA
    Neuroinformatics; 2015 Jul; 13(3):297-320. PubMed ID: 25631538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neurocomputational method for fully automated 3D dendritic spine detection and segmentation of medium-sized spiny neurons.
    Zhang Y; Chen K; Baron M; Teylan MA; Kim Y; Song Z; Greengard P; Wong ST
    Neuroimage; 2010 May; 50(4):1472-84. PubMed ID: 20100579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust 3D reconstruction and identification of dendritic spines from optical microscopy imaging.
    Janoos F; Mosaliganti K; Xu X; Machiraju R; Huang K; Wong ST
    Med Image Anal; 2009 Feb; 13(1):167-79. PubMed ID: 18819835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated analysis of spine dynamics on live CA1 pyramidal cells.
    Blumer C; Vivien C; Genoud C; Perez-Alvarez A; Wiegert JS; Vetter T; Oertner TG
    Med Image Anal; 2015 Jan; 19(1):87-97. PubMed ID: 25299432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated analysis of spines from confocal laser microscopy images: application to the discrimination of androgen and estrogen effects on spinogenesis.
    Mukai H; Hatanaka Y; Mitsuhashi K; Hojo Y; Komatsuzaki Y; Sato R; Murakami G; Kimoto T; Kawato S
    Cereb Cortex; 2011 Dec; 21(12):2704-11. PubMed ID: 21527787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated three-dimensional tracing of neurons in confocal and brightfield images.
    He W; Hamilton TA; Cohen AR; Holmes TJ; Pace C; Szarowski DH; Turner JN; Roysam B
    Microsc Microanal; 2003 Aug; 9(4):296-310. PubMed ID: 12901764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid automated three-dimensional tracing of neurons from confocal image stacks.
    Al-Kofahi KA; Lasek S; Szarowski DH; Pace CJ; Nagy G; Turner JN; Roysam B
    IEEE Trans Inf Technol Biomed; 2002 Jun; 6(2):171-87. PubMed ID: 12075671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. M-AMST: an automatic 3D neuron tracing method based on mean shift and adapted minimum spanning tree.
    Wan Z; He Y; Hao M; Yang J; Zhong N
    BMC Bioinformatics; 2017 Mar; 18(1):197. PubMed ID: 28356056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for dendritic spines detection based on directional morphological filter and shortest path.
    Su R; Sun C; Zhang C; Pham TD
    Comput Med Imaging Graph; 2014 Dec; 38(8):793-802. PubMed ID: 25155696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A surface-based 3-D dendritic spine detection approach from confocal microscopy images.
    Li Q; Deng Z
    IEEE Trans Image Process; 2012 Mar; 21(3):1223-30. PubMed ID: 21896386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3dSpAn: An interactive software for 3D segmentation and analysis of dendritic spines.
    Das N; Baczynska E; Bijata M; Ruszczycki B; Zeug A; Plewczynski D; Saha PK; Ponimaskin E; Wlodarczyk J; Basu S
    Neuroinformatics; 2022 Jul; 20(3):679-698. PubMed ID: 34743262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D dendrite reconstruction and spine identification.
    Zhou W; Li H; Zhou X
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):18-26. PubMed ID: 18982585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An open-source tool for analysis and automatic identification of dendritic spines using machine learning.
    Smirnov MS; Garrett TR; Yasuda R
    PLoS One; 2018; 13(7):e0199589. PubMed ID: 29975722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens.
    Shen H; Sesack SR; Toda S; Kalivas PW
    Brain Struct Funct; 2008 Sep; 213(1-2):149-57. PubMed ID: 18535839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes.
    Xiao X; Djurisic M; Hoogi A; Sapp RW; Shatz CJ; Rubin DL
    J Neurosci Methods; 2018 Nov; 309():25-34. PubMed ID: 30130608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Dendritic Spine Quantification from Confocal Data with Neurolucida 360.
    Dickstein DL; Dickstein DR; Janssen WGM; Hof PR; Glaser JR; Rodriguez A; O'Connor N; Angstman P; Tappan SJ
    Curr Protoc Neurosci; 2016 Oct; 77():1.27.1-1.27.21. PubMed ID: 27696360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales.
    Wearne SL; Rodriguez A; Ehlenberger DB; Rocher AB; Henderson SC; Hof PR
    Neuroscience; 2005; 136(3):661-80. PubMed ID: 16344143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.