These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 200126)

  • 41. Molecular mechanisms involved in the control of glycogenolysis in skeletal muscle by calcium ions and cyclic AMP.
    Cohen P
    Biochem Soc Trans; 1987 Oct; 15(5):999-1001. PubMed ID: 2826274
    [No Abstract]   [Full Text] [Related]  

  • 42. The specificity of adenosine 3':5'-cyclic monophosphate-dependent protein kinase.
    Yeaman SJ; Cohen P
    Biochem Soc Trans; 1976; 4(6):1027-30. PubMed ID: 191308
    [No Abstract]   [Full Text] [Related]  

  • 43. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase.
    Embi N; Rylatt DB; Cohen P
    Eur J Biochem; 1980 Jun; 107(2):519-27. PubMed ID: 6249596
    [No Abstract]   [Full Text] [Related]  

  • 44. Structural and functional assembly of glycogen metabolizing enzymes.
    Dombrádi V; Gergely P; Bot G
    Biosystems; 1980; 12(3-4):289-94. PubMed ID: 6249413
    [No Abstract]   [Full Text] [Related]  

  • 45. Effect of phosphorylation by different protein kinases on the behaviour of glycogen synthase as a substrate for hepatic synthase phosphatases.
    Bollen M; Plana M; Itarte E; Stalmans W
    Biochem Biophys Res Commun; 1986 Sep; 139(3):1033-9. PubMed ID: 3021145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of calcium-activated, cyclic nucleotide-independent protein kinase and adenosine 3':5'-monophosphate-dependent protein kinase as regards the ability to stimulate glycogen breakdown in vitro.
    Kishimoto A; Mori T; Takai Y; Nishizuka Y
    J Biochem; 1978 Jul; 84(1):47-53. PubMed ID: 211121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Cyclic nucleotide-dependent protein kinases--the enzymological aspects and roles in the biological system (author's transl)].
    Miyamoto E
    Tanpakushitsu Kakusan Koso; 1973 May; 18(5):321-32. PubMed ID: 4354861
    [No Abstract]   [Full Text] [Related]  

  • 48. Purification and phosphorylation of rat liver glycogen synthase.
    Jett MF; Soderling TR
    J Biol Chem; 1979 Jul; 254(14):6739-45. PubMed ID: 221508
    [No Abstract]   [Full Text] [Related]  

  • 49. The role of calmodulin in regulation of glycogen metabolism.
    Rylatt DB; Embi N; Cohen P
    Biochem Soc Trans; 1979 Aug; 7(4):622-4. PubMed ID: 113263
    [No Abstract]   [Full Text] [Related]  

  • 50. Regulation of the glycogen phosphorylase system--from physical measurements to biological speculations.
    Busby SJ; Radda GK
    Curr Top Cell Regul; 1976; 10():89-160. PubMed ID: 176011
    [No Abstract]   [Full Text] [Related]  

  • 51. Rabbit skeletal muscle phosphorylase kinase. Catalytic and regulatory properties of the active alpha gamma delta and gamma delta complexes.
    Chan KF; Graves DJ
    J Biol Chem; 1982 May; 257(10):5948-55. PubMed ID: 6279620
    [No Abstract]   [Full Text] [Related]  

  • 52. Glycogen metabolism in myogenic cells in culture. Presence of inhibitors for dephosphorylation of glycogen synthase and glycogen phosphorylase.
    Huang FL; Tao SH
    Arch Biochem Biophys; 1980 Jan; 199(1):123-32. PubMed ID: 6243904
    [No Abstract]   [Full Text] [Related]  

  • 53. Role of phosphorylase kinase and cyclic AMP-dependent protein kinase in the regulation of phosphorylase phosphatase.
    Gergely P; Bot G
    Biochem Soc Trans; 1978; 6(1):21-5. PubMed ID: 205462
    [No Abstract]   [Full Text] [Related]  

  • 54. Cyclic nucleotide control of protein kinases.
    Sharma RK
    Prog Nucleic Acid Res Mol Biol; 1982; 27():233-88. PubMed ID: 6285418
    [No Abstract]   [Full Text] [Related]  

  • 55. The insulin receptor and tyrosine protein kinase activity.
    Cobb MH; Rosen OM
    Biochim Biophys Acta; 1984; 738(1-2):1-8. PubMed ID: 6331499
    [No Abstract]   [Full Text] [Related]  

  • 56. Separation of two phosphorylase kinase phosphatases from rabbit skeletal muscle.
    Antoniw JF; Cohen P
    Eur J Biochem; 1976 Sep; 68(1):45-54. PubMed ID: 183956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism.
    Printen JA; Brady MJ; Saltiel AR
    Science; 1997 Mar; 275(5305):1475-8. PubMed ID: 9045612
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple phosphorylation of rabbit muscle glycogen synthase by glycogen synthase kinase-1. Relationship between phosphorylation state and kinetic properties.
    Salavert A; Itarte E; Massagué J; Guinovart JJ
    FEBS Lett; 1979 Oct; 106(2):279-83. PubMed ID: 227731
    [No Abstract]   [Full Text] [Related]  

  • 59. Amino acid sequence of a region in rabbit skeletal muscle glycogen synthase phosphorylated by cyclic AMP-dependent protein kinase.
    Parker PJ; Aitken A; Bilham T; Embi N; Cohen P
    FEBS Lett; 1981 Jan; 123(2):332-6. PubMed ID: 6262112
    [No Abstract]   [Full Text] [Related]  

  • 60. Cyclic 3',5'-AMP-stimulated and non-stimulated phosphorylation of protein fractions from rat-liver cell sap on incubation with (gamma-32P)ATP.
    Ljungström O; Berglund L; Hjelmquist G; Humble E; Engström L
    Ups J Med Sci; 1974; 79(3):129-37. PubMed ID: 4372760
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.