These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20012912)

  • 1. Selective medicated (saline + natural surfactant) bronchoalveolar lavage in unilateral lung contusion. A clinical randomized controlled trial.
    Marraro GA; Denaro C; Spada C; Luchetti M; Giansiracusa C
    J Clin Monit Comput; 2010 Feb; 24(1):73-81. PubMed ID: 20012912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective medicated (normal saline and exogenous surfactant) bronchoalveolar lavage in severe aspiration syndrome in children.
    Marraro GA; Luchetti M; Spada C; Galassini E; Giossi M; Piero AM
    Pediatr Crit Care Med; 2007 Sep; 8(5):476-81. PubMed ID: 17693914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral lavage with diluted surfactant improves lung function after unilateral lung contusion in pigs.
    Strohmaier W; Trupka A; Pfeiler C; Thurnher M; Khakpour Z; Gippner-Steppert C; Jochum M; Redl H
    Crit Care Med; 2005 Oct; 33(10):2286-93. PubMed ID: 16215383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bronchoalveolar lavage with a diluted surfactant suspension prior to surfactant instillation improves the effectiveness of surfactant therapy in experimental acute respiratory distress syndrome (ARDS).
    Gommers D; Eijking EP; So KL; van't Veen A; Lachmann B
    Intensive Care Med; 1998 May; 24(5):494-500. PubMed ID: 9660267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perfluorocarbon broncho-alveolar lavage and liquid ventilation versus saline broncho-alveolar lavage in adult guinea pig experimental model of meconium inhalation.
    Marraro G; Bonati M; Ferrari A; Barzaghi MM; Pagani C; Bortolotti A; Galbiati A; Luchetti M; Croce A
    Intensive Care Med; 1998 May; 24(5):501-8. PubMed ID: 9660268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ventilation strategies on the efficacy of exogenous surfactant therapy in a rabbit model of acute lung injury.
    Ito Y; Manwell SE; Kerr CL; Veldhuizen RA; Yao LJ; Bjarneson D; McCaig LA; Bartlett AJ; Lewis JF
    Am J Respir Crit Care Med; 1998 Jan; 157(1):149-55. PubMed ID: 9445293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of exogenous surfactant therapy, mechanical ventilation with high end-expiratory pressure and partial liquid ventilation in a model of acute lung injury.
    Hartog A; Vazquez de Anda GF; Gommers D; Kaisers U; Verbrugge SJ; Schnabel R; Lachmann B
    Br J Anaesth; 1999 Jan; 82(1):81-6. PubMed ID: 10325841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative study of recruitment maneuver guided by pressure-volume curve on respiratory physiology and lung morphology between acute respiratory distress syndrome of pulmonary and extrapulmonary origin in canine models].
    Xiong XM; Wen DL; Wen YC; Liu WJ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2011 Jan; 23(1):36-9. PubMed ID: 21251365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung recruitment maneuvers in acute respiratory distress syndrome and facilitating resolution.
    Valente Barbas CS
    Crit Care Med; 2003 Apr; 31(4 Suppl):S265-71. PubMed ID: 12682451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of optimal positive end-expiratory pressure and recruitment maneuvers during lung-protective mechanical ventilation in patients with acute lung injury/acute respiratory distress syndrome.
    Badet M; Bayle F; Richard JC; Guérin C
    Respir Care; 2009 Jul; 54(7):847-54. PubMed ID: 19558735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The impact of mechanical ventilation strategies that minimize atelectrauma in an experimental model of acute lung injury].
    Viana ME; Sargentelli GA; Arruda AL; Wiryawan B; Rotta AT
    J Pediatr (Rio J); 2004; 80(3):189-96. PubMed ID: 15192761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rat model of acute respiratory distress syndrome (ARDS) Part 2, influence of lavage volume, lavage repetition, and therapeutic treatment with rSP-C surfactant.
    Häfner D; Germann PG
    J Pharmacol Toxicol Methods; 1999; 41(2-3):97-106. PubMed ID: 10598681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury.
    Yoshida T; Uchiyama A; Matsuura N; Mashimo T; Fujino Y
    Crit Care Med; 2013 Feb; 41(2):536-45. PubMed ID: 23263584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low tidal volume and high positive end-expiratory pressure mechanical ventilation results in increased inflammation and ventilator-associated lung injury in normal lungs.
    Hong CM; Xu DZ; Lu Q; Cheng Y; Pisarenko V; Doucet D; Brown M; Aisner S; Zhang C; Deitch EA; Delphin E
    Anesth Analg; 2010 Jun; 110(6):1652-60. PubMed ID: 20103541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment with bovine surfactant in severe acute respiratory distress syndrome in children: a randomized multicenter study.
    Möller JC; Schaible T; Roll C; Schiffmann JH; Bindl L; Schrod L; Reiss I; Kohl M; Demirakca S; Hentschel R; Paul T; Vierzig A; Groneck P; von Seefeld H; Schumacher H; Gortner L;
    Intensive Care Med; 2003 Mar; 29(3):437-46. PubMed ID: 12589529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Positive end-expiratory pressure and tidal volume titration after recruitment maneuver in a canine model of acute respiratory distress syndrome].
    Zhan QY; Wang C; Sun B; Pang BS
    Zhonghua Jie He He Hu Xi Za Zhi; 2005 Nov; 28(11):763-8. PubMed ID: 16324272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury.
    Putensen C; Theuerkauf N; Zinserling J; Wrigge H; Pelosi P
    Ann Intern Med; 2009 Oct; 151(8):566-76. PubMed ID: 19841457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of "open lung" modes with low tidal volumes in a porcine lung injury model.
    Albert S; Kubiak BD; Vieau CJ; Roy SK; DiRocco J; Gatto LA; Young JL; Tripathi S; Trikha G; Lopez C; Nieman GF
    J Surg Res; 2011 Mar; 166(1):e71-81. PubMed ID: 21195426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alveolar recruitment in combination with sufficient positive end-expiratory pressure increases oxygenation and lung aeration in patients with severe chest trauma.
    Schreiter D; Reske A; Stichert B; Seiwerts M; Bohm SH; Kloeppel R; Josten C
    Crit Care Med; 2004 Apr; 32(4):968-75. PubMed ID: 15071387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driving Pressure-limited Strategy for Patients with Acute Respiratory Distress Syndrome. A Pilot Randomized Clinical Trial.
    Pereira Romano ML; Maia IS; Laranjeira LN; Damiani LP; Paisani DM; Borges MC; Dantas BG; Caser EB; Victorino JA; Filho WO; Amato MBP; Cavalcanti AB
    Ann Am Thorac Soc; 2020 May; 17(5):596-604. PubMed ID: 32069068
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.