These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20012942)

  • 1. Concentration of the macrolide antibiotic tulathromycin in broncho-alveolar cells is influenced by comedication of rifampicin in foals.
    Venner M; Peters J; Höhensteiger N; Schock B; Bornhorst A; Grube M; Adam U; Scheuch E; Weitschies W; Rosskopf D; Kroemer HK; Siegmund W
    Naunyn Schmiedebergs Arch Pharmacol; 2010 Feb; 381(2):161-9. PubMed ID: 20012942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative determination of the macrolide antibiotic tulathromycin in plasma and broncho-alveolar cells of foals using tandem mass spectrometry.
    Scheuch E; Spieker J; Venner M; Siegmund W
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):464-70. PubMed ID: 17267304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral absorption of clarithromycin is nearly abolished by chronic comedication of rifampicin in foals.
    Peters J; Block W; Oswald S; Freyer J; Grube M; Kroemer HK; Lämmer M; Lütjohann D; Venner M; Siegmund W
    Drug Metab Dispos; 2011 Sep; 39(9):1643-9. PubMed ID: 21690264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LC-MS/MS method for the simultaneous determination of clarithromycin, rifampicin and their main metabolites in horse plasma, epithelial lining fluid and broncho-alveolar cells.
    Oswald S; Peters J; Venner M; Siegmund W
    J Pharm Biomed Anal; 2011 Apr; 55(1):194-201. PubMed ID: 21310577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacokinetics and Pulmonary Distribution of Clarithromycin and Rifampicin after Concomitant and Consecutive Administration in Foals.
    Berlin S; Spieckermann L; Oswald S; Keiser M; Lumpe S; Ullrich A; Grube M; Hasan M; Venner M; Siegmund W
    Mol Pharm; 2016 Mar; 13(3):1089-99. PubMed ID: 26808255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal expression of P-glycoprotein (ABCB1), multidrug resistance associated protein 2 (ABCC2), and uridine diphosphate-glucuronosyltransferase 1A1 predicts the disposition and modulates the effects of the cholesterol absorption inhibitor ezetimibe in humans.
    Oswald S; Haenisch S; Fricke C; Sudhop T; Remmler C; Giessmann T; Jedlitschky G; Adam U; Dazert E; Warzok R; Wacke W; Cascorbi I; Kroemer HK; Weitschies W; von Bergmann K; Siegmund W
    Clin Pharmacol Ther; 2006 Mar; 79(3):206-17. PubMed ID: 16513445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal and hepatic contributions to the pharmacokinetic interaction between gamithromycin and rifampicin after single-dose and multiple-dose administration in healthy foals.
    Berlin S; Wallstabe S; Scheuch E; Oswald S; Hasan M; Wegner D; Grube M; Venner M; Ullrich A; Siegmund W
    Equine Vet J; 2018 Jul; 50(4):525-531. PubMed ID: 29239016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological indices and pulmonary distribution of rifampicin after repeated oral administration in healthy foals.
    Berlin S; Kirschbaum A; Spieckermann L; Oswald S; Keiser M; Grube M; Venner M; Siegmund W
    Equine Vet J; 2017 Sep; 49(5):618-623. PubMed ID: 28063154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clarithromycin is absorbed by an intestinal uptake mechanism that is sensitive to major inhibition by rifampicin: results of a short-term drug interaction study in foals.
    Peters J; Eggers K; Oswald S; Block W; Lütjohann D; Lämmer M; Venner M; Siegmund W
    Drug Metab Dispos; 2012 Mar; 40(3):522-8. PubMed ID: 22170330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir.
    van Waterschoot RA; ter Heine R; Wagenaar E; van der Kruijssen CM; Rooswinkel RW; Huitema AD; Beijnen JH; Schinkel AH
    Br J Pharmacol; 2010 Jul; 160(5):1224-33. PubMed ID: 20590614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sex and AIDS status on the plasma and intrapulmonary pharmacokinetics of rifampicin.
    Conte JE; Golden JA; Kipps JE; Lin ET; Zurlinden E
    Clin Pharmacokinet; 2004; 43(6):395-404. PubMed ID: 15086276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary pharmacokinetics of tulathromycin in swine. Part 2: Intra-airways compartments.
    Villarino N; Lesman S; Fielder A; García-Tapia D; Cox S; Lucas M; Robinson J; Brown SA; Martín-Jiménez T
    J Vet Pharmacol Ther; 2013 Aug; 36(4):340-9. PubMed ID: 23067107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-dose intrapulmonary pharmacokinetics of rifapentine in normal subjects.
    Conte JE; Golden JA; McQuitty M; Kipps J; Lin ET; Zurlinden E
    Antimicrob Agents Chemother; 2000 Apr; 44(4):985-90. PubMed ID: 10722501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin.
    Foster DM; Martin LG; Papich MG
    PLoS One; 2016; 11(2):e0149100. PubMed ID: 26872361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects.
    Gotfried MH; Horn K; Garrity-Ryan L; Villano S; Tzanis E; Chitra S; Manley A; Tanaka SK; Rodvold KA
    Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28696233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of tulathromycin in the treatment of pulmonary abscesses in foals.
    Venner M; Kerth R; Klug E
    Vet J; 2007 Sep; 174(2):418-21. PubMed ID: 17045497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analytical method for the analysis of tulathromycin, an equilibrating triamilide, in bovine and porcine plasma and lung.
    Gáler D; Hessong S; Beato B; Risk J; Inskeep P; Weerasinghe C; Schneider RP; Langer C; LaPerle J; Renouf D; Bessire A; Español E; Rafka R; Ragan C; Boettner W; Murphy T; Keller D; Benchaoui H; Nowakowski MA
    J Agric Food Chem; 2004 Apr; 52(8):2179-91. PubMed ID: 15080618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state plasma and intrapulmonary pharmacokinetics and pharmacodynamics of cethromycin.
    Conte JE; Golden JA; Kipps J; Zurlinden E
    Antimicrob Agents Chemother; 2004 Sep; 48(9):3508-15. PubMed ID: 15328118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preclinical pharmacokinetic modeling approach to the biopharmaceutical characterization of immediate and microsphere-based sustained release pulmonary formulations of rifampicin.
    Doan TV; Grégoire N; Lamarche I; Gobin P; Marchand S; Couet W; Olivier JC
    Eur J Pharm Sci; 2013 Jan; 48(1-2):223-30. PubMed ID: 23159665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of Tulathromycin for the Treatment of Foals with Mild to Moderate Bronchopneumonia.
    Rutenberg D; Venner M; Giguère S
    J Vet Intern Med; 2017 May; 31(3):901-906. PubMed ID: 28421633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.