BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20013339)

  • 21. [Breeding of excellent baker's yeast strain with good flocculation].
    Liu C; He X; Jiang S; Qu N; Zhang B
    Wei Sheng Wu Xue Bao; 2003 Oct; 43(5):659-65. PubMed ID: 16281566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of flocculation ability of brewing yeast inoculates by flow cytometry, proteome analysis, and mRNA profiling.
    Heine F; Stahl F; Sträuber H; Wiacek C; Benndorf D; Repenning C; Schmidt F; Scheper T; von Bergen M; Harms H; Müller S
    Cytometry A; 2009 Feb; 75(2):140-7. PubMed ID: 19072835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of physicochemical interactions and FLO genes expression in the immobilization of industrially important yeasts by adhesion.
    Kuřec M; Brányik T
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):491-7. PubMed ID: 21367588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attachment of MAL32-encoded maltase on the outside of yeast cells improves maltotriose utilization.
    Dietvorst J; Blieck L; Brandt R; Van Dijck P; Steensma HY
    Yeast; 2007 Jan; 24(1):27-38. PubMed ID: 17192852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w.
    Brown SL; Stockdale VJ; Pettolino F; Pocock KF; de Barros Lopes M; Williams PJ; Bacic A; Fincher GB; Høj PB; Waters EJ
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1363-76. PubMed ID: 17024473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deletion of tandem repeats causes flocculation phenotype conversion from Flo1 to NewFlo in Saccharomyces cerevisiae.
    Liu N; Wang DL; Wang ZY; He XP; Zhang BR
    J Mol Microbiol Biotechnol; 2009; 16(3-4):137-45. PubMed ID: 18057865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of flocculent industrial yeast by the yeast flocculation gene FLO1.
    Wang FZ
    Prikl Biokhim Mikrobiol; 2009; 45(5):586-91. PubMed ID: 19845292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems.
    Rossouw D; Bagheri B; Setati ME; Bauer FF
    PLoS One; 2015; 10(8):e0136249. PubMed ID: 26317200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation.
    Rossouw D; Bauer FF
    Appl Microbiol Biotechnol; 2009 Oct; 84(5):937-54. PubMed ID: 19711068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast.
    Rodriguez ME; Orozco H; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2014 Sep; 14(6):845-57. PubMed ID: 24920206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains.
    Zara G; Bardi L; Belviso S; Farris GA; Zara S; Budroni M
    J Appl Microbiol; 2008 Mar; 104(3):906-14. PubMed ID: 17961155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.
    Tofalo R; Perpetuini G; Di Gianvito P; Arfelli G; Schirone M; Corsetti A; Suzzi G
    J Appl Microbiol; 2016 Jun; 120(6):1574-84. PubMed ID: 26923379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations involving flocculation-sedimentation.
    Gomes DG; Guimarães PM; Pereira FB; Teixeira JA; Domingues L
    Bioresour Technol; 2012 Mar; 108():162-8. PubMed ID: 22285899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Regulation of tandem repeats on the function of flocculation protein in Saccharomyces cerevisiae].
    Li E; Chang Q; Guo X; He X; Zhang B
    Wei Sheng Wu Xue Bao; 2012 Jan; 52(1):69-76. PubMed ID: 22489462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aquaporins in Saccharomyces cerevisiae wine yeast.
    Karpel JE; Bisson LF
    FEMS Microbiol Lett; 2006 Apr; 257(1):117-23. PubMed ID: 16553841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A; del Olmo ML
    FEMS Yeast Res; 2004 May; 4(7):699-710. PubMed ID: 15093773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endo-polygalacturonase in Saccharomyces wine yeasts: effect of carbon source on enzyme production.
    Radoi F; Kishida M; Kawasaki H
    FEMS Yeast Res; 2005 Apr; 5(6-7):663-8. PubMed ID: 15780666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different genetic responses to oenological conditions between a flocculent wine yeast and its FLO5 deleted strain: Insights from the transcriptome.
    Di Gianvito P; Tesnière C; Suzzi G; Blondin B; Tofalo R
    Food Res Int; 2018 Dec; 114():178-186. PubMed ID: 30361014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trends in wine microbiology.
    Ramón D
    Microbiologia; 1997 Dec; 13(4):405-11. PubMed ID: 9608514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.