BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20013906)

  • 1. Dry film microchips for miniaturised separations.
    Guijt RM; Candish E; Breadmore MC
    Electrophoresis; 2009 Dec; 30(24):4219-24. PubMed ID: 20013906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes.
    Henderson RD; Guijt RM; Haddad PR; Hilder EF; Lewis TW; Breadmore MC
    Lab Chip; 2010 Jul; 10(14):1869-72. PubMed ID: 20448880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of capillary zone electrophoresis performance of powder-blasted and hydrogen fluoride-etched microchannels in glass.
    Pu QS; Luttge R; Gardeniers HJ; van den Berg A
    Electrophoresis; 2003 Jan; 24(1-2):162-71. PubMed ID: 12652587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfabricated porous glass channels for electrokinetic separation devices.
    Cezar de Andrade Costa R; Mogensen KB; Kutter JP
    Lab Chip; 2005 Nov; 5(11):1310-4. PubMed ID: 16234957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner electrophoresis microchips.
    Coltro WK; da Silva JA; Carrilho E
    Electrophoresis; 2008 Jun; 29(11):2260-5. PubMed ID: 18446805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates.
    Yao X; Chen Z; Chen G
    Electrophoresis; 2009 Dec; 30(24):4225-9. PubMed ID: 20013907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis.
    Tsai YC; Jen HP; Lin KW; Hsieh YZ
    J Chromatogr A; 2006 Apr; 1111(2):267-71. PubMed ID: 16384565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of SU-8 microchips as separation devices and comparison with glass microchips.
    Sikanen T; Heikkilä L; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Aug; 79(16):6255-63. PubMed ID: 17636877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of plastic microchips by hot embossing.
    Kricka LJ; Fortina P; Panaro NJ; Wilding P; Alonso-Amigo G; Becker H
    Lab Chip; 2002 Feb; 2(1):1-4. PubMed ID: 15100847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.
    Belder D; Deege A; Kohler F; Ludwig M
    Electrophoresis; 2002 Oct; 23(20):3567-73. PubMed ID: 12412126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis.
    Dürr M; Kentsch J; Müller T; Schnelle T; Stelzle M
    Electrophoresis; 2003 Feb; 24(4):722-31. PubMed ID: 12601744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of the channels of poly(dimethylsiloxane) microfluidic chips with polyacrylamide for fast electrophoretic separations of proteins.
    Xiao D; Le TV; Wirth MJ
    Anal Chem; 2004 Apr; 76(7):2055-61. PubMed ID: 15053671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PCR microfluidic devices for DNA amplification.
    Zhang C; Xu J; Ma W; Zheng W
    Biotechnol Adv; 2006; 24(3):243-84. PubMed ID: 16326063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect fluorescence detection of simple sugars via high-pH electrophoresis in poly(dimethylsiloxane) microfluidic chips.
    Monahan J; Gewirth AA; Nuzzo RG
    Electrophoresis; 2002 Jul; 23(14):2347-54. PubMed ID: 12210242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer.
    Koesdjojo MT; Tennico YH; Remcho VT
    Anal Chem; 2008 Apr; 80(7):2311-8. PubMed ID: 18303914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic analysis of N-glycans on microfluidic devices.
    Zhuang Z; Starkey JA; Mechref Y; Novotny MV; Jacobson SC
    Anal Chem; 2007 Sep; 79(18):7170-5. PubMed ID: 17685584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips.
    Fu LM; Lee CY; Liao MH; Lin CH
    Biomed Microdevices; 2008 Feb; 10(1):73-80. PubMed ID: 17680365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency peptide analysis on monolithic multimode capillary columns: Pressure-assisted capillary electrochromatography/capillary electrophoresis coupled to UV and electrospray ionization-mass spectrometry.
    Ivanov AR; Horváth C; Karger BL
    Electrophoresis; 2003 Nov; 24(21):3663-73. PubMed ID: 14613191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and performance of a microchip electrophoresis instrument with sensitive variable-wavelength fluorescence detection.
    Belder D; Deege A; Maass M; Ludwig M
    Electrophoresis; 2002 Jul; 23(14):2355-61. PubMed ID: 12210243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed chiral separations on microchip electrophoresis devices.
    Rodríguez I; Jin LJ; Li SF
    Electrophoresis; 2000 Jan; 21(1):211-9. PubMed ID: 10634489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.