These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20013912)

  • 1. Comparing polyelectrolyte multilayer-coated PMMA microfluidic devices and glass microchips for electrophoretic separations.
    Currie CA; Shim JS; Lee SH; Ahn C; Limbach PA; Halsall HB; Heineman WR
    Electrophoresis; 2009 Dec; 30(24):4245-50. PubMed ID: 20013912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates.
    Yao X; Chen Z; Chen G
    Electrophoresis; 2009 Dec; 30(24):4225-9. PubMed ID: 20013907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticizer-assisted bonding of poly(methyl methacrylate) microfluidic chips at low temperature.
    Duan H; Zhang L; Chen G
    J Chromatogr A; 2010 Jan; 1217(1):160-6. PubMed ID: 19945714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding.
    Sun X; Peeni BA; Yang W; Becerril HA; Woolley AT
    J Chromatogr A; 2007 Aug; 1162(2):162-6. PubMed ID: 17466320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and performance of injection molded poly(methylmethacrylate) microchips for capillary electrophoresis.
    Nikcevic I; Lee SH; Piruska A; Ahn CH; Ridgway TH; Limbach PA; Wehmeyer KR; Heineman WR; Seliskar CJ
    J Chromatogr A; 2007 Jun; 1154(1-2):444-53. PubMed ID: 17477932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a microchip-based chromatographic platform. Part 2: sol-gel phases modified with polyelectrolyte multilayers for capillary electrochromatography.
    Breadmore MC; Shrinivasan S; Karlinsey J; Ferrance JP; Norris PM; Landers JP
    Electrophoresis; 2003 Apr; 24(7-8):1261-70. PubMed ID: 12707920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis.
    Shah JJ; Geist J; Locascio LE; Gaitan M; Rao MV; Vreeland WN
    Electrophoresis; 2006 Oct; 27(19):3788-96. PubMed ID: 16960835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method.
    Dang F; Shinohara S; Tabata O; Yamaoka Y; Kurokawa M; Shinohara Y; Ishikawa M; Baba Y
    Lab Chip; 2005 Apr; 5(4):472-8. PubMed ID: 15791347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microchip electrophoresis for DNA separation by wire-imprinted microchannels on PMMA substrates.
    Chen SH
    Methods Mol Biol; 2007; 385():1-8. PubMed ID: 18365700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations.
    Qu S; Chen X; Chen D; Yang P; Chen G
    Electrophoresis; 2006 Dec; 27(24):4910-8. PubMed ID: 17120260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rejuvenation method for poly(N,N-dimethylacrylamide)-coated glass microfluidic chips.
    Ma R; Crabtree HJ; Backhouse CJ
    Electrophoresis; 2005 Jul; 26(14):2692-700. PubMed ID: 15981296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer.
    Koesdjojo MT; Tennico YH; Remcho VT
    Anal Chem; 2008 Apr; 80(7):2311-8. PubMed ID: 18303914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low temperature bonding of poly(methylmethacrylate) electrophoresis microchips by in situ polymerisation.
    Chen G; Li J; Qu S; Chen D; Yang P
    J Chromatogr A; 2005 Nov; 1094(1-2):138-47. PubMed ID: 16257300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis.
    Tsai YC; Jen HP; Lin KW; Hsieh YZ
    J Chromatogr A; 2006 Apr; 1111(2):267-71. PubMed ID: 16384565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sol-gel-modified poly(methyl methacrylate) electrophoresis microchip with a hydrophilic channel wall.
    Chen G; Xu X; Lin Y; Wang J
    Chemistry; 2007; 13(22):6461-7. PubMed ID: 17508382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coated microfluidic devices for improved chiral separations in microchip electrophoresis.
    Ludwig M; Belder D
    Electrophoresis; 2003 Aug; 24(15):2481-6. PubMed ID: 12900859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.
    Belder D; Deege A; Kohler F; Ludwig M
    Electrophoresis; 2002 Oct; 23(20):3567-73. PubMed ID: 12412126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary electrophoretic separation of mono- and di-saccharides with dynamic pH junction and implementation in microchips.
    Kazarian AA; Hilder EF; Breadmore MC
    Analyst; 2010 Aug; 135(8):1970-8. PubMed ID: 20517548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.
    Yap YC; Guijt RM; Dickson TC; King AE; Breadmore MC
    Anal Chem; 2013 Nov; 85(21):10051-6. PubMed ID: 24063252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.